Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

M. E. - SEMESTER – I • EXAMINATION – WINTER 2012

Subj	ect (code: 711503N Date: 12-01-2013	
Time	: 02	Name: Advanced Solid Mechanics 2.30 pm – 05.00 pm Total Marks: 70	1
Instr			
	2.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	(a)	its general equation to get critical load for end condition as both end fixed.	07
	(b)	Discuss energy approach for stability of columns & derive the general equation to get critical load P using energy approach. ($P_{cr}=\beta l$, $\Delta v=\Delta T$)	07
Q.2	(a)		07
	(b)	Is the following 2-D state of plane strain is possible? Check. $\varepsilon_X = 7x^2y - 3x^2 + 7xy^2 + 9$	07
		$\varepsilon_{\rm Y} = 9x^3 + 8xy + 2x^2 + 8$	
		$\varepsilon_{XY} = \frac{1}{2} \gamma_{XY} = 17x^2y + 2xy + 15$ OR	
	(b)		07
	()	equilibrium:	
Q.3	(a)	$\sigma_X = 3x^2 + 9xy + 10y^2$ $\sigma_Y = 7x^2 + 8xy + 3y^2$ $\tau_{XY} = -4x^2 - 6xy - 4.5y^2$ Derive the basic differential equation for beam column subjected to axial compressive force P and distributed load of intensity Q.	07
	(b)	• •	07
		One end nee.	
Q.3	(a)	Define co-efficient of end restrained using beam column theory. Derive basic equations for statically indeterminate beam column with elastic	07
	(b)	restraints. Derive the standard equation for bucking of frames to get critical load. Use symmetrical bucking.	07
Q.4	(a) (b)	A cylinder 100 mm Φ (internal) is subjected to an internal pressure 60 MPa. There is no external pressure. If the allowable stress in the metal is 160 Mpa, calculate external diameter.	10 04
Q.4	(a)	For the following state of stresses, find the principal stresses.	07
4.	(a)	Normal stresses: $\sigma_{xx} = 450 \text{ MPa}$, $\sigma_{yy} = -90 \text{ MPa}$, $\sigma_{zz} = -50 \text{ MPa}$, and Shear stresses: $\tau_{xy} = 90 \text{ MPa}$, $\tau_{yz} = -50 \text{ MPa}$, $\tau_{zx} = 20 \text{ MPa}$,	U7
	(b)	Locate principal planes and obtain principal strains at point $(3, -1)$ for the following system of strains: $\varepsilon_X = x^3y + 5x^2 + 3x^3 + 2y^3 + 12$ $\varepsilon_Y = x^2 + 3y^2 + 2x^4 + 5y^3$ $\gamma_{XY} = 3x^2 + y^2 - \frac{1}{2}x^4 + y^4$ where strains are in nm and x and y in mm.	07

1

- **Q.5** (a) Find the linear strains: ε_{xx} , ε_{yy} and shear strain: γ_{xy} , as well as state of stresses: σ_{xx} , σ_{yy} and shear strain: τ_{xy} , if the linear strains measured by the strain gauges in the direction are $\varepsilon_{35^\circ} = 400 \times 10^{-6}$ (Compressive), $\varepsilon_{70^\circ} = 750 \times 10^{-6}$ (Compressive) and $\varepsilon_{130^\circ} = 300 \times 10^{-6}$ (Tensile).
 - (b) State the differential equation for the case of non-conservative forces for column with one end fixed and one end free condition using static criteria of stability.

OR

- Q.5 (a) Enlist the assumptions involved in the theory of torsion of a long bar, subjected to twisting moment: T. Also, write steps in deriving the equation: $\nabla^2 (\phi) = -2G\theta$ with usual notations
 - **(b)** Derive general equation of deflection to study initial effect of curvature **07** using imperfection approach.
