GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER – I • EXAMINATION – WINTER 2012

Subject code: 711606N Date: 16-			01-2013	
		ame: Energy and Mass Integration		
Instr		.30 pm – 05.00 pm Total Marks: 70 ons:		
	2.]	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.		
Q.1	(a)	Discuss the effect of minimum temperature driving force, ΔT_m for design of heat exchanger network.	05	
	(b)	Justify the statement: "Pinch design approach assures design with minimum utility requirements".	05	
	(c)	Justify the statement: "Adding cycles can save work required for refrigeration."	04	
Q.2	(a)	Draw TQ diagrams for (i) side strippers and (ii) multi-effect distillation and explain how both concepts increases thermodynamic efficiency.	08	
	(b)	Explain the step-by-step procedure to estimate the optimum value of ΔT .	06	
		OR		
	(b)	The following streams exist at and just above the pinch point for a heat	06	

(b) The following streams exist at and just above the pinch point for a heat 06 exchanger network synthesis problem. Propose all possible configurations, which correspond to matches that split the fewest streams.

Stream	FCp
H1	10
H2	6
C1	9
C2	3

Q.3 Determine the minimum utility consumption for the hot and cold streams given 14 below using LP transshipment formulation.

Stream	FCp (MW/K)	T_{in} (°C)	T_{out} (°C)
H1	1.3	400	110
H2	2.2	360	120
C1	1.6	160	400
C2	1.8	110	360

Use $\Delta T_{min} = 10 \text{ °C}$

Write a model for minimum utility cost if H1 and C2 are not allowed to exchange heat for the above Heat Exchanger Network Synthesis (HENS) problem.

OR

- Q.3 (a) Explain minimum umber of mass exchangers by breaking mass loops with 07 example.
 - (b) Determine the minimum utility consumption for the hot and cold streams 07 given below using $\Delta T_{min} = 10$ °C.

Stream	T in °C	T _{out} °C	FC _p kW/°C
C1	60	180	3

C2	30	100	2
H1	180	40	2
H2	150	40	4

Q.4 For the Heat Exchanger Network Synthesis (HENS) problem following stream 14 information is available:

Stream	FCp (kW/°C)	T_{in} (°C)	T_{out} (°C)
H1	1.60	100	420
H2	3.27	200	310
H3	2.60	200	420
C1	2.80	440	150
C2	2.38	500	300

Draw Composite Curve and find out pinch point for $\Delta T_{min} = 10$ °C. Estimate the fewest number of heat exchangers needed if heat is not allowed to flow through pinch.

OR

- Q.4 (a) Explain the composite curve method for computation of minimum usage of 07 external mass-separating agent to determine minimum operating cost of mass integration with example of H_2S removal from sour cock oven gas.
 - (b) Determine minimum utility targets and formulate MILP problem for the **07** minimum number of exchanger units.

Stream	FCp (kW/°C)	T_{in} (°C)	T_{out} (°C)
H1	1.5	100	430
H2	3.0	150	350
C1	2.5	450	150
C2	2.0	500	300

- Q.5 (a) Explain: How inter-cooling, inter-heating and preheating of feed increases 07 possibility of energy integration in distillation?
 - (b) Explain Heat Pumping, Vapor Recompression and Reboiler Flashing 07 configurations for distillation columns.

OR

- Q.5 (a) Given the flow and composition for the top product, list out the steps for 07 method of plotting inter-cooling and inter-heating temperature curve and explain the use of those curves.
 - (b) A co-polymerization plant uses benzene solvent. Benzene must be 07 recovered from its gaseous waste stream. Two lean streams in the process, an additive stream and a catalytic solution, are potential process MSAs. Organic oil, which can be regenerated by flash separation, is the external MSA. The stream data are as under:

Stream	F(kmol/s)	y ^s or x ^s	y ^t or x ^t
Off-gas	0.2	0.0020	0.0001
Additives	0.08	0.003	0.006
Catalytic sol	0.05	0.002	0.004
Organic oil	Unlimited	0.0008	0.0100

In the given concentration ranges following equilibrium equations apply:

Additives: y = 0.25x,

Catalytic solution: y = 0.5x,

Organic oil: y = 0.1x

Show how to utilize the process MSAs and minimize the amount of the external MSA required to remove benzene from the waste rich stream. Use $\Delta x_{min} = 0.0001$.
