GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER – I • EXAMINATION – WINTER 2012

Subject code: 712101NDate: 08 -01-2013Subject Name: Applied Thermodynamics & Heat TransferTime: 02.30 pm - 05.00 pmTotal Marks: 70Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- **Q.1** (a) Derive the expression for the availability associated with the closed system(ϕ) in **07** the following form

 $\phi = (u - u_0) - T_0(s - s_0) + P_0(v - v_0)$

- (b) Steam enters a turbine steadily at 3 Mpa and 450°C at a rate of 8 kg/s and exit at 0.2 Mpa and 150°C. The steam is losing heat to the surrounding air at 100 kPa and 25°C at a rate of 300 kW, and kinetic and potential energy changes are negligible. Calculate the irreversibility and the availability of the steam at the inlet condition.
- **Q.2** (a) Using the Maxwell relations, determine a relation for $(\partial s/\partial p)_T$ for a gas whose 07 equation of state is given by P(v-b) = RT
 - (b) Calculate the latent heat of vaporization (h_{fg}) and entropy change during phase 07 change (s_{fg}) of steam at 150°C from the Clapeyron equation and compare them with the tabulated values.

OR

- (b) Derive a relation for the volume expansivity (β) and the isothermal compressibility 07 (α) for an ideal gas and for the gas whose equation of state is P(v-b) = RT
- Q.3 (a) Explain the concept of phase rule and phase equilibrium for multi component 07 system.
 - (b) Determine the mole fraction of sodium that ionizes according to the reaction 07 $Na \square Na^+ + e^-$ at 2000 K and 0.5 atm ($K_p = 0.668$ for this reaction).

OR

Q.3 (a) For the case of solid cylinder having surface temperature T_s and generating heat 07 at the rate of g_0 per unit volume, show that the temperature at the centre of the cylinder (T_c) is given by

$$T_c = \frac{g_0 r_0^2}{4k} + T_s$$

Where r_0 , the maximum radius of the cylinder and k is is the thermal conductivity of the cylinder.

(b) At a certain time, the temperature distribution in a long cylindrical tube with an 07 inner radius of 250 mm and outside radius of 400 mm is given by $T_r = 750 + 1000r - 5000r^2({}^{0}C)$

Where r in meters. Thermal conductivity and thermal diffusivity of the tube material are

58 W/mK and 0.004 m²/h respectively. Calculate

(i) rate of heat flow at inside and outside surfaces per unit length

(ii) rate of heat storage per unit length

- (a) If a thin and long fin is used, show that the heat transfer from the fin is given by **Q.4** 07 $Q_{fin} = \sqrt{hPkA_c} \left(T_0 - T_\infty\right)$
 - (b) An aluminum sphere weighing 6 kg and initially at temperature of 350°C is 07 suddenly immersed in a fluid at 30°C with convection coefficient of 60 W/m^2K . Estimate the time required to cool the sphere to 100°C. Take thermo physical properties as

 $C = 900 \text{ J/kgK}, \rho = 2700 \text{ kg/m}^3, k = 205 \text{ W/mK}$

OR

- (a) Explain the Reynolds analogy for laminar flow over a flat plate. 0.4
- (b) Water entering at 10°C is heated to 40°C in a tube of 0.02 m ID at a mass flow 07 **Q.4** rate of 0.01 kg/s. The outside of the tube is covered with an insulated electric heating element that produces a uniform flux of 15000 W/m² over the surface. Neglecting any entrance effect. Determine the length of pipe needed for a 30°C increase in average temperature and the pressure drop in the pipe. Use the following properties of water

 ρ =997 kg/m³, C_p=4180 J/kgK, k_f=0.608 WmK, μ =910×10⁻⁶ Ns/m²

- (a) Physically, what does the Grashof number represents? How does the Grashof 04 **Q.5** number differ from the Reynolds number?
 - (b) Under what conditions can the outer surface of a vertical cylinder be treated as a 03 vertical plate in natural convection calculations?
 - (c) A hot plate $1 \text{ m} \times 0.5 \text{ m}$ at 180°C is kept in still air at 20°C . Find 07 (i) The heat transfer coefficient

(ii) Initial rate of cooling of the plate in °C/min

Mass of the plate is 20 kg and specific heat is 400 J/kgK. Assume that the 0.5 m side is vertical. Use following correlation.

 $Nu_{I} = 0.59(Ra_{I})^{\frac{1}{4}}$

 $k_f = 0.0321$ WmK, $\nu = 23.18 \times 10^{-6}$ m² / s, Pr = 0.668

(a) Define the following term in relation with radiation Q.5

(i) Solid angle

(ii) Spectral intensity of radiation $(I_{h\lambda})$

(iii) Radiosity

(iv)Grey body

(b) Calculate the following quantities for the industrial furnace (black body) emitting 07 radiation at 2650°C.

(i) Spectral emissive power at $\lambda = 1.2 \,\mu m$

(ii)Wavelength at which the emissive power is maximum

(iii)Maximum spectral emissive power

(iv)Total emissive power

07

07