Seat No.: _____ Enrolment No._____ GUJARAT TECHNOLOGICAL UNIVERSITY

GUJARAT TECHNOLOGICAL UNIVERSITY M. E SEMESTER – I • EXAMINATION – WINTER 2012			
Subject code: 713001N Date: 08-01-2013			
Subject Name: Advance Reactor Design			
Time: 02.30 pm – 05.00 pm Total Marks: 70			
Instructions:			
		Attempt all questions. Make suitable assumptions wherever necessary.	
		Figures to the right indicate full marks.	
Q.1	(a)	Give industrial examples of reactions in parallel and reactions in series.	07
	. ,	Discuss interstate cooling for exothermic reactors.	07
Q.2	(a)	(i) Derive design equation for CSTR operating at steady state when X, v_0 , CAo, and	07
		F_{Ao} are specified. (ii) In CSTR if variables V, v ₀ , CAo, and F_{Ao} are specified, find the temperature and	
		conversion at which CSTR will operate stable.	
	(b)	Discuss Design equation for semi batch reactor with heat exchanger.	07
	a)	OR	07
	(b)	Obtain the expression for τ_{max} and C_{Bmax} for the reaction,	07
Q.3		$A \longrightarrow B \longrightarrow C$, in a PFR. An exothermic irreversible first order reaction A $B_{, is}$ carried out in an adiabatic	14
Q.0		batch reactor. The production rate of B is 100 kg/hr. Determine the volume of the	14
		reactor needed for adiabatic operation. If isothermal operation is carried out at 120°C,	
		find the size.	
		Data: Reaction rate constant at $120^{\circ}C = 0.017 \text{ min}^{-1}$	
		Activation Energy = 30000 cal/gmmole	
		Heat of Reaction – 100 cal/g	
		M.W. = 300	
		Heat Capacity of A & B = $0.75 \text{ cal/g}^{\circ}\text{C}$ Density of reaction mixture = 1000 kg/m^3	
		Reactor filling & draining time = 30 min	
		Final conversion = 95%	
		Temperature of feed = 1200° C	
		Temperature dependence on rate constant: $k = 2.5 \times 10^{14} e^{-15000/T}$	
		OR	
Q.3	(a)	Write the steps to design the CSTR for non-isothermal operation for first order	07
	(b)	irreversible liquid phase reaction.	07
	(b)	For First Order Reaction and First Order decay Rate, Derive conversion equation for Moving Bed Reactor.	07
Q.4	(a)	Derive the equation for thickness of the film by vapour deposition in a LPCVD.	07
		Show how the deposition thickness varies along the length of the reactor.	
	(b)	Discuss: Bubble Column Reactor.	07
Q.4	(a)	OR With reference to multiple-steady state encountered in exothermic reaction, discuss	07
דיצ	()	ignition-extinction curve.	
	(b)	Discuss the stability of a CSTR handling exothermic reactions.	07
Q.5	(a) (b)	Derive the rate equation for slurry reactor.	07 07
	(b)	Discuss Mass Balance and Design equation of Bio reactor. OR	07
Q.5	(a)	Discuss: Fluidized bed reactor.	07
-	(b)	Discuss Rate Laws and Stoichiometry of Bio reactor.	07
