Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER - I • EXAMINATION - WINTER 2012

Subi	ect co	ode: 713003N Date: 12-01-2013	
•		ame: Advance Fluid Flow Operation	
•		30 pm – 05.00 pm Total Marks: 70	
	ructio	-	
	1. A	Attempt all questions.	
		Make suitable assumptions wherever necessary.	
	3. I	Figures to the right indicate full marks.	
Q.1	(a)	Derive $v_H / v_L = 1 - x / 1 - \beta$ for two phase flow.	07
		where v _H : specific volume of Homogeneous phase	
		v_{L} : specific volume of Liquid phase	
		x : dryness fraction	
	(3.)	β : ratio of gas volume flow rate to total volume flowrate	07
0.1		(b) Discuss about various flow patterns in vertical pipes for two phase flow.	
Q.2	(a)	Discuss in detail about two phase flow pattern map of Hewiit and Roberts for vertical pipes.	07
	(b)	Discuss any two models of Non-Newtonian fluid in detail.	07
	(~)	OR	٠.
	(b)	Discuss in detail about two phase flow pattern map of Taitel and Duckler for	07
		horizontal pipes.	
Q.3	(a)	Explain principle, design and method of calculating viscosity using Plate and	07
	4. V	Cone Viscometer.	
	(b)	A solution of sodium hydroxide of density 1650 kg/m ³ and viscosity 50 mN	07
		s/m ² is agitated by a propeller mixer of 0.5 m diameter in a tank of 2.28 m diameter, and the liquid depth is 2.28 m. The propeller is situated 0.5 m	
		above the bottom of tank. What is the power which the propeller must impart	
		to the liquid for a rotational speed of 2 Hz.	
		OR	
Q.3	(a)		07
	(b)	Explain the concepts of suction lift, cavitations and priming for the	07
		centrifugal pumps.	
Q.4	(a)	Discuss about types of fluidization.	07
	(b)	Write a note on CFD and its application in chemical engineering.	07
Q.4	(a)	OR Discuss about application of jet in vacuum system.	07
Q.4 Q.4	(a) (b)	Write a note on centrifugal blowers.	07
Q.5 Q.5	(a)	Derive the expression for the ratio of area occupied by the gas phase to the	07
C	()	entire pipe for two phase flow?	
	(b)	Explain how is solid-solid and liquid – solid mixing achieved?	07
		OR	
Q.5		A single acting compressor supply 0.1 m ³ /s of air measured at 273 K and	14
		101.3kN/m ² is compressed to 390kN/m ² , if the suction temperature is 289 K,	
		the stroke is 0.25 m, and the speed is 4.0 Hz, what is the cylinder diameter?	
		Assuming the cylinder clearance is 4 per cent and compression and re	
		compression are isentropic ($\gamma = 1.4$), what are the theoretical power	
		requirement for the compressor?	
