GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER – I • EXAMINATION – WINTER 2012

Subject code: 713903NDate: 12-01-2013Subject Name: Optimum Utilization of Heat and PowerTime: 02.30 pm - 05.00 pmTotal Marks: 70Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Explain the concept of heat pump and heat engine with block diagram and 08 discuss applications in process industries.
 - (b) Explain co-generation performance calculations.
- Q.2 (a) Explain Waste Heat Recovery discussing practical limitations in 06 implementations with examples.
 - (b) For the Heat Exchanger Network Synthesis (HENS) problem following **08** stream information is available:

Stream	T in	Tout	FCp
	°C	°C	kW/ºC
C1	70	180	30
C2	30	100	20
H1	180	50	25
H2	150	50	40

Draw Hohmann / Lockhart Composite Curves and find out pinch point for $\Delta T_{min} = 10$ °C.

OR

- (b) Write step by step procedure to find out optimum value of ΔT_{min} for heat **08** exchanger network synthesis problem.
- **Q.3** Based on the information for the streams and utilities given below, design a heat 14 exchanger network using pinch design approach. Use $\Delta T_{min} = 10$ °K.

Stream	T in	Tout	FCp	h
	°C	°C	kW/°C	W/m ² °C
C1	60	180	300	600
C2	30	105	260	600
H1	180	40	200	700
H2	150	40	400	800
Steam	230	230		5000
CW	25	32		600

OR

- Q.3 (a) Discuss new trends and modifications in dryer design for energy efficiency. 06
 - (b) What is stream splitting? Explain how stream splitting can help to get 05 better heat exchanger network design.
 - (c) Classify cogeneration systems with respect to prime movers used. 03

•

06

- **Q.4** (a) Explain the working of Adsorption Refrigeration Systems.
 - (b) Discuss energy efficiency, performance and limitations of multistage 09 evaporation system.

OR

- Q.4 (a) Discuss major aspects in considerations for deign of Insulation to reduce 07 energy losses.
 - (b) Using GCC diagram for multistage refrigeration system and explain the **07** saving in work by adopting multistage refrigeration system.

Q.5 (a) Discuss techno economics of Co-generation. 07

(b) Explain recuperative heat exchanger for waste heat recovery. 07

OR

Q.5 (a) Compare Combined Cycles and Rankine cycl		Compare Combined Cycles and Rankine cycle.	07
	(b)	Discuss Kalina Cycle giving practical limitations and benefits.	07

05