GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER – I • EXAMINATION – WINTER 2012

Subject code: 713904N Subject Name: Advanced Thermal Engineering Time: 02.30 pm – 05.00 pm

Total Marks: 70

Date: 16-01-2013

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Use of Steam table is permitted.
- (a) Explain meaning of terms available energy and unavailable energy with 07 0.1 suitable examples. 07
 - (b) Differentiate between Nucleate boiling and Film boiling.

(a) Derive General heat conduction equation in Cylindrical co-ordinates. Q.2

(b) Two reversible heat engines A and B are arranged in series. Engine A rejects 07 heat directly to engine B. A receives 200 kJ at a temperature of 421°C from hot source while engine B is in communication with a cold sink at a temperature of 5° C. If the work output of A is twice that of B, find(a) intermediate temperature between A and B,(b) efficiency of each engine and(c) heat rejected to the sink.

OR

(b) A square plate heater (15 * 15) is inserted between two slabs. Slab is 2 cm 07 thick (k = 50 W/m⁰C) and slab B is 1 cm thick(k = $0.2 \text{ W/m}^{\circ}C$). The outside heat transfer coefficients on side A and side B are 200 W/m² ⁰Cand 50 W/m² ⁰C respectively. The temperature of surrounding air is 25 ⁰C. If rating of heater is 1 kW, find: (a) Maximum temperature in the system (b) Outer surface temperature of two slabs. Draw the equivalent electrical circuit also.

Q.3 (a) Using Gibbs relations derive Maxwell relations

(b) The composite wall of an oven consists of three materials, two of which are of 07known thermal conductivity, $k_A = 20$ W/mK and kc = 50 W/mK and known thickness, $L_A = 0.3$ m and $L_c = 0.15$ m. The third material, B, which is sandwiched between materials A and C, is of known thickness, $L_B = 0.15$ m, but unknown thermal conductivity k_B. Under steady state conditions, measurements reveal an outer surface temperature of 20°C, an inner surface temperature of 600°C, and oven air temperature of 800°C. The inside convection coefficient h is known to be 25 W/m²K. What is the value of k_B ?

OR

- (a) Explain thermal insulation and derive the equation for the critical thickness of 07 **Q.3** insulation of pipe.
 - (b) A refrigerant suction line having outer diameter 30 mm is required to be 07 thermally insulated. The outside air film coefficient of heat transfer is 12 $W/m^2 {}^{0}C$. The thermal conductivity of insulation is 0.3 $W/m^{0}C$. (a) Determine whether the insulation will be effective or not; (b) Estimate the maximum value of thermal conductivity of insulating material to reduce heat transfer;(c) Determine the thickness of cork insulation to reduce the heat transfer to 22 percent if the thermal conductivity of cork is 0.038 W/m^oC.

07

07

07 A vertical plate 350mm high and 420mm wide at 40° C is exposed to saturated 07 **(b)** steam at 1 atm. Calculate: (1) The film thickness and max. velocity at the bottom of the plate (2) total heat flux to the plate. Assume vapour density is small compared to that of the condensate.

OR

- **Q.4** Derive the expression for LMTD for the counter flow heat exchangers. (a)
 - Water at atmospheric pressure is to be boiled in polished copper pan. The 07 **(b)** diameter of the pan is 350 mm and is kept at 115° C. Calculate (i) power of the burner (ii) Rate of evaporation in Kg/h (iii) Critical heat flux for these conditions. Take: $C_{pl} = 4220 \text{ J/KgK}, n=1$
- Write a short note on Gas radiation. **Q.5** (a)
 - (b) Determine the heat loss by radiation per meter length of 80mm diameter pipe 07 at 300° C when (i) located in a large room with red brick walls at a temp. of 270C and (ii) enclosed in a 160 mm diameter red conduit at a temp. of 27° C. Also Calculate % reduction in heat flow. Take $\varepsilon_1=0.79 \ \varepsilon_2=0.93$

OR

- Q.5 (a) Derive the expression for the radiant heat exchange between the two non-07 black infinite parallel planes.
 - **(b)** In a certain double pipe heat exchanger, hot water flows at a rate of 5000 kg/h 07 and gets cooled from 95° C to 65° C. At the same time 50000Kg/h of cooling water at 30[°]C enters the heat exchanger. The overall heat transfer co-efficient remains constant at 2270 W/m²K. Determine the heat transfer area required and the effectiveness, assuming parallel flow streams. Assume for both the streams Cp = 4.2 KJ/KgK

07

07