GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER - I • EXAMINATION - WINTER 2012 Subject code: 714101N Date: 08-01-2013 Subject Name: Mathematical Methods in Signal Processing Time: 02.30 pm – 05.00 pm **Total Marks: 70 Instructions:** 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. Que 1) Compute transpose, inverse and rank of the matrix A. [7] a) $A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$ Let $f: X \to R$ be an arbitrary function defined on a set X. Show that b) [7] d(x, y) = |f(x) - f(y)| is a Pseudometric. **Que 2**) Explain about stochastic AR and MA models. a) [7] b) Explain about binary hypothesis testing. [7] OR For Given vector , compute the l_p metric $d_p(X,0)$ for **b**) [7] $p = 1, 2, 4, 10, 100, \infty$. Comment on why $d_p(X, 0) \rightarrow \max(X_i)$ as $p \to \infty$. Explain significance of Auto correlation and cross correlation function. **Que 3**) [7] a) What is the significance of HMM model? b) [7] OR Que 3) [7] a) Consider a data sequence $\{x|t|\}$, the correlation matrix R is $\begin{bmatrix} .5 & .3 \\ .3 & .5 \end{bmatrix}$ and the cross – correlation vector p with a desired signal is $\begin{vmatrix} .2 \\ .5 \end{vmatrix}$. Determine the optimal weight vector. A Grammian matrix R is always positive semi define. It is positive define [7] b) if and only if the vectors $p_1, p_2, p_3, ..., p_m$, are linearly independent.

Que 4)	a)	Explain any two properties of Fourier transform.	[7]
	b)	Explain sampling process with suitable example. Discuss about axtialiasing filter.	[7]
		OR	
Que 4)	a)	A linear operator $A: X \to Y$ is bounded if and only if it is continuous.	[7]
	b)	Show that if A has both a left inverse and a right inverse, they must be	[7]
Que 5)	a)	same.	[7]
	b)	Explain two applications of ML estimation.	[7]
	U)	Explain any two properties of z- transform.	[/]
		OR	
Que 5)	a)		[7]
		i) If λ is an eigen value of a nonsingular matrix A , show that $\frac{ A }{\lambda}$ is an	
		eigen value of <i>adj</i> A.	
	b)	$\begin{bmatrix} 2 & 1 & 1 \end{bmatrix}$	[7]
		Verify Cayley-Hamilton theorem for $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$ and use it to find the	
		simplified form of $A^8 - 5A^7 + 7A^6 - 3A^5 + A^4 - 5A^3 + 8A^2 - 2A + I_3$	
