Seat No.: ____

Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER – III • EXAMINATION – WINTER 2012

Subject code: 730801Date: 30-12-2013Subject Name: Engineering OptimizationTotal Marks: 70Time: 10.30 am – 01.00 pmTotal Marks: 70Instructions:1. Attempt all questions.2. Make suitable assumptions wherever necessary.			
	3.	Figures to the right indicate full marks.	
Q.1	(a) (b)	Explain Classifications of Optimization Methods. Formulate the problem of minimum weight design of a helical spring under axial load as a geometric programming problem. Consider constraints on the shear stress, natural frequency, and buckling of the spring.	07 07
Q.2	(a)	Explain the difference between Elimination and Interpolation methods of	07
	(b)	Optimization. Define the terms Design variables and Pre-assigned parameters and differentiate them.	07
	(b)	OR State the necessary and sufficient conditions for the maximum of a Multivariable and Multi objective function with illustrative example.	07
Q.3	(a)	Maximize $f(x) = x_1 + x_2$ Subject to $x_1^2 + x_2^2 = 1$ using Lagrange multiplier	07
	(b)	method Differentiate Fibonacci and golden section methods of optimization?	07
		OR	
Q.3	(a)	What is Genetic Algorithm? What are the basic operations used in GAs.	07 07
	(b)	Why Stochastic programming is needed in Engineering Optimization? Explain stochastic linear programming method in detail.	07
Q.4	(a)	Explain Generalized Reduced Gradient Method of optimization with its	07
	(b)	significance. Minimize $f(x_1, x_2) = x_1 - x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$ starting from the point $\mathbf{X}_1 = \{0 \ 0\}^T$ up to three iterations using method of steepest descent. OR	07
Q.4	(a) (b)	Explain Cubic Interpolation Method of optimization with the help of flowchart. Minimize the function f using Geometric Programming method. $f = x_1 x_2^2 x_3^{-1} + 2x_1^{-1} x_2^{-3} x_4 + 10x_1 x_3$ subject to $3x_1^{-1} x_3 x_4^{-2} + 4x_3 x_4 \le 1$ $5x_1 x_2 \le 1$	07 07
Q.5	(a)	What is Convergence? Differentiate between linear and super-linear	07
	(b)	convergence. Minimize $f(x) = x_1^2 - x_2$	07
		Subject to $x_1 + x_2 = 6$	57
		$x_1 - 1 \ge 0$	
		$x_1^2 + x_2^2 \le 26$	

1/2

Q.5 (a) Enlist MATLAB Functions and explain any TWO for Solving Optimization 07 Problems in MATLAB Optimization Toolbox.

(b) Write a MATLAB program to Minimize $f(X) = x_1^3 - 6x_1^2 + 11x_1 + x_3$ subject to $x_1^2 + x_2^2 - x_3^2 \le 0$ $4 - x_1^2 - x_2^2 - x_3^2 \le 0$ $x_3 - 5 \le 0$ $-x_i \le 0, i = 1, 2, 3$ initial point is $X_1 = \{0.1 \ 0.1 \ 3.0\}^T$

07