GUJARAT TECHNOLOGICAL UNIVERSITY			
M. E SEMESTER – III • EXAMINATION – WINTER 2012			
Subject code: 733001Date: 30/12/2012Subject Name: Advance Process Optimization			
Time: 10.30 am – 01.00 pm Total Marks: 70			
	Instructions:		
1. Attempt all questions.			
2. Make suitable assumptions wherever necessary.			
		3. Figures to the right indicate full marks.	
Q.1		Maximize P with respect to x _i when it is subject to restrictions that	(14)
C		$11x_1 + 3x_2 - 2x_3 \ge P$	
		$4x_1 + 5x_2 + x_3 \ge P$	
		$6\mathbf{x}_1 + 10\mathbf{x}_2 + 5\mathbf{x}_3 \ge \mathbf{P}$	
		$x_1 + 8x_2 + 12x_3 \ge P$ $x_1 + x_2 + x_3 = 1$, $x_i \ge 0$	
Q.2	(a)		07
X	(b)	Find the area of the largest rectangle with its lower base on the x-axis and whose	07
		corners are bounded at the top by the curve $y = 10 - x^2$.	
		OR	
	(b)	· · ·	07
		that require the least material (assume uniform thickness of material) to construct the box.	
Q.3		Find the minimum of the function,	14
Q.J		$y = (x_1 - 0.5)^2 + (x_2 - 1.0)^2$	14
		Subject to the restriction that	
		$g = x_1^2 + 2x_2^2 - 4 \le 0$	
		OR	. –
Q.3	(a)	5 1	07
Q.4	(b)	Discuss about TABU Search for optimization in detail. Using the Powell method, conduct three stages of search seeking the minimum of	07 14
T .		the objective function	14
		$y = x_1^2 + 3x_1^2 x_2^2 - 2x_1 x_2 x_3 + 5x_3^2$	
		OR	
Q.4		Use the Fibonacci method to seek the position of the maximum value of the	14
		function $y = 9x - 0.1x^2$	
		y = 9x - 0.1x In the range $0 \le x \le 100$ to within an accuracy of 0.1 percent of the original range.	
		Give the results of the calculations for the first five stages only.	
Q.5	(a)	Discuss optimization of liquid-liquid extraction process.	07
	(b)	Discuss optimizing the economic operation of a fixed-bed filter.	07
		OR	
Q.5	(a)	Explain Dynamic Programming with the help of an example.	07 07
	(b)	Find the minimum of, $y = x_1^2 + 2x_2^2$	07
		Subject to, $y = x_1 + 2x_2$	
		$3x_1 + x_2 \ge 2$	
		$x_1 + 2x_2 \geq 3$	
		Using a penalty function method.	
