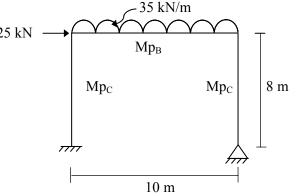
Date: 25-10-2012

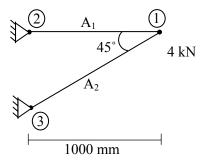
Total Marks: 70

GUJARAT TECHNOLOGICAL UNIVERSITY M.E. – SEMESTER – IV EXAMINATION – OCTOBER 2012

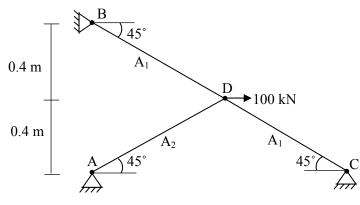

Subject code: 741501 Subject Name: Structural Optimization Time: 2:30 pm – 5:00 pm

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Explain Stationary points, relative and global optimum points for a 07 function.
 - (b) Enlist and describe briefly "Advanced Techniques for Optimization". 07
- Q.2 (a) Explain Concave and Convex function for single and two variables with 07 their properties.
 - (b) Determine the critical points and locate any relative minima, maxima and 07 saddle points of function f defined by $f(x, y) = 2x^2 + 2xy + 2y^2 6x$.

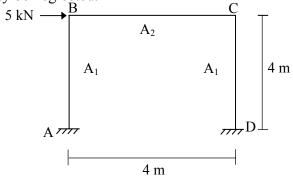

- (b) Considering the function, $f(x) = 12x^2 45x^4 + 40x^3 + 5$, locate the 07 stationary points and find out if the function is convex, concave or neither at the points of optima based on the testing rules.
- Q.3 (a) Maximizing the function f(x, y, z) = xyz subject to the constraints, $g_1(x, y, z) = x + y + z = 1$ and $g_2(x, y, z) = x + y - z = 0$. (Geometrically, each of these constraints is a plane and considering them simultaneously means considering their intersection, which will be a line).
 - (b) Using Kuhn Tucker's condition maximize a function $f(x_1, x_2) = 4x_1 + 3x_2$ 07 subject to $g(x_1, x_2) = 2x_1 + x_2 \le 10$ and $x_1, x_2 \ge 0$.

- Q.3(a) Use simplex method to maximize,
P = 3x + 4y subject to: $x + y \le 4$, $2x + y \le 5$, $x \ge 0$, $y \ge 0$ 07(b) Derive Kuhn Tucker's condition to maximize07
 - f(x₁, x₂) = $12x_1^2$ $8x_2$ Subject to: 4x₁ + x₂ = 16, x₁² + x₂² ≤ 11.4, 3x + y ≤ 18, x₁ ≥ 0
- Q.4 Formulate constraint equations & objective function for following structure 14 using plastic method. Obtain solution for minimum weight by graphical method.



1

Q.4 Design a following statically determinate pin jointed truss structure using 14 force or displacement method. Take: $E = 200 \text{ kN/mm}^2$, $\sigma_t = 0.15 \text{ kN/mm}^2$, $\sigma_c = 0.15 \text{ kN/mm}^2$, $\delta_{at 1} = 6 \text{ mm}$.



Q.5 Design the following pin jointed statically determinate truss structure for 14 minimum weight. The horizontal and vertical deflections at joint D are both limited to 5 mm and the numerical value of stress in any member is limited to 1.3×10^6 kN/m². Use matrix force or displacement method.

OR

Q.5 Design the following fixed based portal frame structure for minimum 14 volume. The permissible sway is 5 mm and permissible bending stress is 0.21 kN/mm². Use matrix force or displacement method. Axial deformation may be neglected.

