GUJARAT TECHNOLOGICAL UNIVERSITY

M. E. - SEMESTER - II • EXAMINATION - WINTER • 2013

Subject code: 1720110 Date: 04-01-2014

Subject Name: Numerical Methods

Time: 10.30 am – 01.00 pm Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Discuss concept of significant digits. What is difference between Accuracy and Precision? Evaluate $e^{0.5}$ using $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots + \dots + \frac{x^n}{n!}$, correct answer using ε_a to prespecified error ε_s as three significant digits.
 - (b) Determine the real root of $f(x) = 5x^3 5x^2 + 6x$ -2 using bisection. Employ initial guesses of $x_1 = 0$ and $x_u = 1$ and iterate until the estimated error ε_a falls below a level of $\varepsilon_s = 10\%$
- - (b) What do you mean by algebraic and transcendental equation? Find the root of f(x) 07 = $3x e^x + \sin x$ using Newton-Rahpson method correct answer to three decimal digits.

OR

- (b) Discuss graphically False position method and Use it to find root of tanx = -1 correct up to 3 decimal places.

| Discuss partial pivoting and complete pivoting. Solve the following system of

equations using Guass-Elimination method 3.15x - 1.96y + 3.85z = 12.95

$$2.13x + 5.12y - 2.89z = -8.61$$

 $5.92x + 3.05y + 2.15z = 6.88$

OR

- Q.3 (a) What is numerical integration? Derive trapezoidal and simpson's 1/3 rule.
 - (b) What do you mean by diagonally dominant system? Solve the following system of equations using Guass-Seidel method 28x+4y-z=32 x+3y+10z=24 2x+17y+4z=35
- Q.4 (a) Find cubic polynomial f(x) for the given data:

| X: | 0 | 1 | 2 | 3 | | F(x): | 1 | 2 | 33 | 244 |

And hence find f(2.5).

07

07

07

Q.4 (a) What is disadvantage of Lagrange Interpolation? Construct the divided difference 07 table for the data

X:	0.5	1.5	3.0	5.0	6.5	8.0
F(x):	1.625	5.875	31.0	131.0	282.125	521.0

Hence, find the interpolating polynomial and the value of f(7).

(b) Fit an equation of the form $y = ab^x$ to the following data:

 X:
 2
 3
 4
 5
 6

 Y:
 144
 172.8
 207.4
 248.8
 298.6

- Q.5 (a) Use Euler's method to solve the initial value problem $\frac{dy}{dt} = 0.7$ $1 t + 4y, y(0) = 1 \text{ in the interval } 0 \le t \le 0.5 \text{ with } h = 0.1.$
 - (b) Use Runge-Kutta method of order two to integrate $dy/dx = \sin y$ with y(0) = 1 from x = 0 to 0.5 in two steps.

OR

- Q.5 (a) Use the modified Euler's method to find the approximate value of y(1.5) for the solution of the initial value problem dy/dx = 2xy, y(1) = 1. Take h = 0.1. Determine the relative and percentage error.
 - (b) Use the Runge-Kutta method of order four and with h = 0.1, find an approximate solution of $dy/dx = x^2+y$ at x = 0.2, given that y = -1 when x = 0.

07