GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER - II • EXAMINATION - WINTER • 2013

Subject code: 1722101 Date: 24-12-2013

Subject Name: Design of Heat Exchange Equipments Time: 10.30 am – 01.00 pm

Total Marks: 70

Instructions:

(b)

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

(a) Explain the factors to be considered while selecting heat exchangers? Q.1 07 07

- For a balanced heat exchanger $(\frac{C_{min}}{C_{max}} = 1)$, show that
 - 1. For Parallel flow, $\varepsilon = \frac{1 e^{-2NTU}}{2}$ 2. For counter flow, $\varepsilon = \frac{\text{NTU}}{1 + \text{NTU}}$
- Give detailed classification of heat exchanger based on construction and flow **Q.2** 07 (a) arrangement of fluid?
 - (b) Draw the temperature profile along the length of heat exchanger for following 07 cases (1) $C_h \rightarrow \infty$ (2) $C_h = C_c$ and (3) $C_c \rightarrow \infty$

- (b) 1. When is a heat exchanger classified as being compact? Do you think a 07 double pipe heat exchanger can be classified as a compact heat exchanger?
 - 2. In the heat transfer relation $\dot{Q} = UAF\Delta T_{im}$ for a heat exchanger, What is the quantity F called? What does it represent? Can F be greater than one?
- Explain the operation of a plate heat exchanger? What are its applications? 0.3 (a) 07 Explain the approximate design of plate heat exchanger to suit preliminary 07 **(b)** sizing of the plate units for a given heat duty?

OR

- Q.3 Explain passes and flow arrangement in gasket plate heat exchanger. State its (a) 07 applications.
 - (b) Give classification of evaporator in detail? How they are different than other 07 heat exchanger? Name the three recent correlations for intube flow boiling refrigerants?
- Write two important functions of baffle and explain different type and **Q.4** (a) 07 geometry of baffles used in a shell and tube heat exchanger?
 - (b) A heat exchanger is to be designed to heat raw water by the use of condensed 07 water at 67 °C and 0.2 bar which will flow in the shell side with a mass flow rate of 50,000 kg/h. The heat will be transferred to 30,000 kg/h of city water coming from a supply at 17 °C. Water outlet temperature should not be less than 40 °C. A fouling resistance of 0.000176 m².K/W is suggested. Calculate the overall heat transfer coefficient for fouled as well as clean surfaces and length of tube for 2-P shell and tube heat exchanger using "Kern method". Use following specifications and Correlations;

Tube side specification		Shell side specification		
O.D. = 19 mm		Shell diameter = 0.39 m		
I.D. = 16 mm		Pitch size $= 0.024$		
No. of tubes = 124		Baffle spacing = 0.25 m		
Tube layout- Square Pitch		Nu = 0.36 $\left(\frac{D_eG_s}{\mu}\right)^{0.55} \left(\frac{\mu C_p}{k}\right)^{1/3} \left(\frac{\mu_b}{\mu}\right)^{0.14}$		
$K_{tube} = 60 \text{ W/m}^2 \text{K}$				
$(f/2)(Re_{b}-1000)Pr$		(μ)	$(\kappa)(\mu_w)$	
$Nu_{b} = \frac{(f/2)(Re_{b}-1000)Pr}{1+12.7(f/2)^{1/2}(Pr^{2/3}-1)}$				
Where;				
$f = (1.58 \ln Re - 3.28)^{-2}$				
Properties	Units	Tube side	Shell side	
ρ	Kg/m ³	996.8	983.2	
C _p	J/kg K	4179	4184	
μ	$N.s/m^2$	8.2×10 ⁻⁴	4.67×10 ⁻⁴	
k	W/m K	0.610	0.652	
Pr	-	5.65	3.00	
$\mu_{\rm w} = 6.04 \times 10^{-4} \text{ N.s/m}^2$				

OR

- Q.4 (a) Draw and explain various shell designs suggested by the "TEMA standard" for 07 the shell and tube heat exchanger?
 - (b) The condenser of a large steam power plant is a shell and tube heat exchanger 07 having a single shell and 30,000 tubes, with each tube making two passes. The tubes are thin walled with 25 mm diameter and steam condenses on the outside of the tubes with $h_o = 11 \text{ kW/m}^2 \text{ K}$. The cooling water flowing through the tubes is 30,000 kg/s and the heat transfer rate is 2 GW. Water enters at 20 °C while steam condenses at 50 °C. Find the length of the tubes in one pass. Properties of water at 27 °C are $C_p = 4.18 \text{ kJ/kg K}$, $\mu = 855 \times 10^{-6} \text{ N.s/m}^2$, k = 0.613 W/m K and Pr = 5.83. The flow of water is turbulent, use Dittus-Boelter equation towards water side: $Nu = 0.023 \text{ Re}^{0.8} \text{Pr}^{0.4}$

Q.5 (a)		Explain the strategies to control fouling?		
	(b)	Explain the designed of coal fired furnace?	07	
		OR		
Q.5	(a)	What is hairpin heat exchanger? Define hydraulic (D_h) and Equivalent (D_e)	07	
-		diameters for bare inner tube and annulus of a hairpin heat exchanger.		
	(b)	Explain rotary and fixed matrix regenerators with their applications.	07	
