GUJARAT TECHNOLOGICAL UNIVERSITY

M. E. - SEMESTER - II • EXAMINATION - WINTER • 2013

Subject code: 1724103 Date: 31-12-2013

Subject Name: Error Control Coding In Communication

Time: 10.30 am – 01.00 pm Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- **Q.1** (a) Write a short note on Error control strategies.

07

(b) Consider the linear block code with the codeword defined by

07

 $U = m_1 + m_2 + m_4 + m_5, m_1 + m_3 + m_4 + m_5, m_1 + m_2 + m_3 + m_5, m_1 + m_2 + m_3 + m_4, m_1, m_2, m_3, m_4, m_5$

- (i) Show the generator matrix.
- (ii) Show the parity-check matrix.
- (iii) Find n, k and d_{min}.
- Q.2 (a) Prove that a linear block code with a minimum distance d_{min} can detect up to $(d_{min}$ -1) 0' errors in each code vector and can correct up to $[(d_{min}$ -1)/2] errors where $[(d_{min}$ -1)/2] denotes the largest integer no greater than $(d_{min}$ -1)/2.
 - (b) Consider a (15,11) cyclic code generated by $g(x) = 1+x+x^4$. Devise a feedback shift register encoder circuit. Illustrate the encoding procedure with the message vector 10010110111 by listing the state of the registers.

OR

(b) The generator polynomial for a (15,7) cyclic code is $G(x) = 1+x^4+x^6+x^7+x^8$

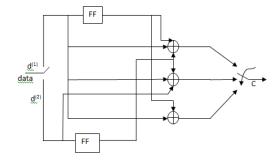
07

- (i) Find the code-vector is systematic form for the message $d(x) = x^2 + x^3 + x^4$
- (ii) Assume that the first and last bit of the code vector $\mathbf{v}(\mathbf{x})$ for $\mathbf{d}(\mathbf{x}) = \mathbf{x}^2 + \mathbf{x}^3 + \mathbf{x}^4$ suffer transmission errors. Find syndrome of $\mathbf{v}(\mathbf{x})$.
- Q.3 (a) Explain operation of meggitt decoder of cyclic code with block diagram.

07

(b) Consider a (3,1,2) convolution code with $g^{(1)}=(011)$, $g^{(2)}=(110)$ and $g^{(3)}=(101)$.

07


- (i) Draw the encoder block diagram
- (ii) Find the generator matrix
- (iii)Find the code-vector corresponding to the information sequence d=10001

OR

Q.3 (a) What are RS codes? How are they formed? List the applications of RS codes.

07

- (b) For the (3,2,1) encoder shown in figure, find code-word C for input sequences of $\mathbf{07}$ $\mathbf{d}^{(1)}=101$ and $\mathbf{d}^{(2)}=110$ using
 - (i) Time domain approach
 - (ii) Transform domain approach

Q.4	(a)	Write short note on interleaved codes	07
	(b)	For the $(7,4)$ single error correcting cyclic code, the generator polynomial $g(x)=1+x+x^3$, find all the 16 code vectors of the cyclic code both in nonsystematic and	07
		systematic form.	
		OR	
Q.4	(a)	What do you understand by state diagram and code tree of a convolution encoder? Explain clearly.	07
	(b)	Using RS code circuit to encode the symbols $\{2,6,7\}$ with a $(7,3)$ R-S code in systematic form. Show the resulting codeword in binary form. Verify the encoding results by evaluating the codeword polynomial at the roots of the $(7,3)$ R-S generated polynomial $g(x)$.	07
Q.5	(a)	Explain recursive systematic convolution code.	07
	(b)	Explain procedure of R-S code decoding using suitable example. OR	07
Q.5	(a)	Write a short note on MAP decoding algorithm.	07
•	(b)	Write short note on PG-LDPC code	07
