Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY M.E.- SEMESTER-I • EXAMINATION – WINTER 2013

Subject Code: 2715203Date: 30-3Subject Name: Digital Signal Processing			
Time: 10.30 To 13.00 Total Mark			Į
mst	1. 2.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	(a)	$x(n) = 1 0 \le n \le 6$	07
		= 0 otherwise Also plot the magnitude and phase spectra obtained from the DTFT function $X(e^{j\omega})$	
	(b)		07
Q.2	(a)	Mention and Prove the following properties of of Discrete Fourier Transform	07
		(DFT) (i) Linearity (ii) Time Shifting	
	(b)	(iii) Frequency Shifting (iv) Time Scaling Draw the signal flow graph for an 8-point FFT.	07
	(~)	Compare the following arithmetic computational effort between 8-point FFT	•••
		and 8-point DFT (i) Complex Multiplication (ii) Real Multiplication	
		(iii) Complex Additions (iv) Real Additions	
	(b)	(i) Find $H(z)$ and determine its poles and zeros if	07
		$y(n) + \frac{3}{4}y(n-1) + \frac{1}{8}y(n-2) = x(n) + x(n-1)$	07
		(ii) If $h_1(n) = \left(\frac{1}{2}\right)^n u(n)$ and $h_2(n) = \left(\frac{-1}{2}\right)^n u(n)$ are the impulse responses of two	
		systems in cascade then determine the impulse response of the overall system with the following approaches • $h(n) = h_1(n) \otimes h_2(n)$ and $h(n) = Z^{-1}[H(z)]$	
Q.3	(9)		07
Q 10	(u)	is the length of the impulse response sequence. Obtain the expressions for magnitude and phase responses of the system with N as the order of the system.	07
	(b)	Find $f(n)$, a causal sequence, if $F(z)$ is given by the following	07
		$(i)\frac{1+z^{-1}}{1-z^{-1}+z^{-2}} \qquad (ii)\frac{1+2z^{-1}}{1-\frac{1}{2}z^{-1}} (iii)\frac{1}{\left(1-\frac{1}{2}z^{-1}\right)^2}$	

OR

Q.3 (a) The frequency response of a linear-phase response FIR system is given by $H(e^{j\omega}) = e^{-j3\omega}(0.21145 + 0.386568.\cos\omega + 0.28856.\cos 2\omega + 0.21432.\cos 3\omega)$ Determine its impulse response and its step response

1

07

- (b) Find the impulse response for the following systems using Z-transform 07 approach
 - (i) $y(n) \frac{3}{4}y(n-1) + \frac{1}{8}y(n-2) = x(n)$ (ii) y(n) - y(n-1) = x(n) + x(n-1)
- Q.4 (a) Design an analog Butterworth filter to obtain H(s) with the following filter 07 specifications
 - Passband frequency = 1,000Hz
 - Stopband frequency = 12,000Hz
 - Passband attenuation = 1dB
 - Stopband attenuation = 60dB
 - (b) Let x(t) be a composite signal made up of four sinusoidal signals of 07 frequencies 1kHz, 1.5kHz, 17kHz and 17.5kHz. Assuming the following sampling rates and plot the spectra of x(t = nTs) on ω (angle/sample) axis
 (i) Fs = 16kHz
 (ii) Fs = 24kHz
 (iii) Fs = 48kHz

- Q.4 (a) Design an analog Chebyshev filter to obtain H(s) with the following filter 07 specifications
 - Passband frequency = 500Hz
 - Stopband frequency = 10,000Hz
 - Passband attenuation = 1dB
 - Stopband attenuation = 80dB
 - (b) Let $X(e^{j\omega})$ be the Fourier Transform of x(n). Show that **07** $X(e^{j\omega}) = X_e(e^{j\omega}) + X_o(e^{j\omega})$ where $X_e(e^{j\omega})$ and $X_o(e^{j\omega})$ are the even and odd parts of $X(e^{j\omega})$

Q.5 (a) Obtain the cut-off frequencies of the following systems

(i)
$$H(s) = \frac{1}{s+1}$$

(ii) $H(s) = \frac{1}{s^2 + \sqrt{2}s + 1}$

Using impulse invariant transformation method, obtain H(z) and determine the d.c. gains of the above systems. Assume the sampling rate to be 1000Hz.

(b) Let $H(s) = \frac{10}{s+10}$ be the system function of an analog low pass system. Obtain

H(z) out of H(s) using frequency transformation methods, if H(z) represents a digital highpass filter.

OR

Q.5 (a) Let $H(s) = \frac{s+2}{s^2+4s+3}$ be the system function of an analog system. Using Bilinear Transformation method and assuming a sampling rate of fs = 1000Hz,

obtain H(z) and determine its frequency response at $\omega = \pi/2$.

- (b) Obtain the relations for the following analog system transformation methods07(a) Low Pass to High Pass
 - (b) Low Pass to Band Pass
 - (c) Low Pass to Band Stop

07

07