GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER – I • EXAMINATION – WINTER • 2013

Subjec Time: 1	le: 710201N Date: 23-12-2013 me: Computer Algorithms) am – 01.00 pm Total Marks: 70			
2	. Att . Ma	1S: tempt all questions. the suitable assumptions wherever necessary. gures to the right indicate full marks.		
Q.1	(a)	Explain the terms: (Give example wherever necessary) i) Articulation Point ii) Decrease Key iii) Order statistics iv) NP complete problem	08	
	(b)	Differentiate greedy, divide and conquer and dynamic programming algorithm	03	
	(c)	design strategies. Define binomial tree and explain its properties.	03	
Q.2	(a)	i) Explain the terms weighted union, union by rank and path compression heuristics	04	
		ii) Show that any comparison based sorting algorithms requires $\Omega(nlgn)$	03	
	(b)	comparisons in worst case. Give properties of red black trees and explain its rotations with example OR	07	
	(b)	Explain how red black tree can be augmented to retrieve an element with a given rank.	07	
Q.3	(a)	Explain following operations on Fibonacci heap i) Insertion of a node ii) Union of two Fibonacci heaps	07	
	(b)	Write down counting sort algorithm and determine its time complexity.	07	
Q.3	(a)	OR What is binomial heap? Explain union operation on two binomial 07 heaps.		
	(b)	Write down bucket sort algorithm. Derive its time complexity.	07 07	
Q.4	(a)	Consider the chain of matrices A1,A2,,A6 with the dimensions given below. Give the optimal parenthesization to get the product A2A5		
		Matrix Dimension		
		A1 30 X 35		
		A2 35 X 15		

Matrix	Dimension
A1	30 X 35
A2	35 X 15
A3	15 X 5
A4	5 X 10
A5	10 X 20
A6	20 X 25

(b) What is an amortized analysis? Explain aggregate method of amortized **07** analysis using suitable example.

Q.4	(a)	Discuss 0-1 knapsack problem. Consider an instance of a knapsack problem with seven items and weight carrying capacity as W=12. Weight and values of items are given below. Solve this problem using dynamic						
		programming Item 1 2 3 4 5 6 7						
		Value 1 3 5 12 13 15 18						
	(b)	Define B-tree. Explain with example how B-tree is constructed	07					
Q.5	5 (a) Analyze the running time of DFS algorithm if graph is represented by adjace matrix instead of adjancy list.							
	(b)	Define precisely Set Cover and Vertex Cover problems 04						
	(c)	What is polynomially turing reducible problem? Explain with example 06						
		how problem A can be polynomially Turing reduced to problem B.						
		OR						
Q.5	(a)	Describe bitonic sorting with example.	07					
	(b)	Write a short note on approximation algorithms	04					
	(c)	Define P, NP, NP completes problems.						
