Enrolment No.___

GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER - I • EXAMINATION - WINTER • 2013

Subject code: 710401N

Subject Name: Statistical Signal Analysis

Time: 10.30 am – 01.00 pm

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- (a) Define Cumulative Distribution Function. List and prove all the properties of 0.1 07 CDF.
 - (b) Let Y=a $cos(\omega t+\phi)$ where a, ω and t are constants and ϕ is a uniform random 07 variable in the interval $(0, 2\pi)$. The random variable Y results from sampling the amplitude of a sinusoid with random phase φ . Find the expected value of Y and expected value of the power of Y, Y^2 .

Q.2 (a) Consider a random process X(t) defined by

> $X(t) = U \cos t + V \sin t$, $-\infty < t < \infty$

where U and V are independent RV's, each of which assumes the values -2 and 1 with the probabilities 1/3 and 2/3, respectively. Show that X(t) is WSS but not strict-sense stationary.

(b) Let X and Y denote the amplitude of noise signals at two antennas. The random 07 vector (X, Y) has the joint pdf

$$f(x, y) = axe^{-ax^2/2}bye^{-by^2/2}$$
 $x > 0, y > 0, a > 0, b > 0$

- a. Find the joint cdf.
- b. Find P[X > Y].
- c. Find the marginal pdf's.

OR

		OK OK	
	(b)	Find the mean and variance of the geometric random variable.	07
Q.3	(a)	i) A communication system accepts a positive voltage V as input and outputs a voltage $Y = \alpha V+N$, where $\alpha = 10^{-2}$ and N is a Gaussian random variable with parameters $m = 0$ and $\sigma = 2$. Find the value of V that gives $P[Y < 0] = 10^{-6}$.	04
		ii) Explain Markov Inequality.	03
	(b)	State and prove central limit theorem.	07
		OR	
Q.3	(a)	If X and Y both are independent then show that $E[XY] = E[X] E[Y]$.	07
	(b)	i) A fair coin is tossed 10 times. Find the probability of the occurrence of 5 or 6 heads.	03
		ii) A deck of cards contains 10 red cards numbered 1 to 10 and 10 black cards numbered 1 to 10. How many ways are there of arranging the 20 cards in a row? Suppose we draw the cards at random and lay them in a row, what is the probability that red and black cards alternate?	04
Q.4	(a)	Explain the following: Correlation, covariance and correlation coefficient.	07
	(b)	Find the characteristic function of the uniform random variable in the interval [a, b]. Find the mean and variance of X by applying the moment theorem.	07 07
		OR	
Q.4	(a)	Explain probability generating function.	07
	(b)	Let the random variable Y be defined by $Y = aX + b$, where a is a nonzero	07

constant. Suppose that X has cdf $F_x(x)$, then find $F_y(y)$. Find $f_y(y)$.

07

Date: 23-12-2013

Total Marks: 70

- Q.5 (a) Classify random processes and explain each of them.
 - (b) Consider the random process $X(t) = Y \cos \omega t$, $t \ge 0$ where ω is a constant and Y 07 is a uniform random variable over (0,1).
 - i) Find E[X(t)].
 - ii) Find the autocorrelation function of X(t).
 - iii) Find the autocovariance function of X(t).

OR

- **Q.5** (a) Explain strong and weak law of large numbers.
 - (b) Show that if $\{X(t), t \in T\}$ is a strict-sense stationary random process, then it is **07** also WSS.

07

07