GUJARAT TECHNOLOGICAL UNIVERSITY

M. E. - SEMESTER – I • EXAMINATION – WINTER • 2013

Subject code: 710423

Date: 06-01-2014

Subject Name: Neuro Computing and Applications

Time: 10.30 am – 01.00 pm

Instructions:

Total Marks: 70

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) "Neural network exhibits a graceful degradation in performance rather 07 than catastrophic failure"- In this statement which benefit of neural network is evident? Discuss it fully comparing with conventional computing.
 - (b) Explain Sigmoid as an activation function used in single and multilayer 07 neural networks. Explain how it differs than other function giving clear comparison.
- Q.2 (a) Starting with input node (forward step), derive weight updating equations 07 for neuron j when a) neuron j is an output node for back propagation learning algorithm. Clearly mentions all assumptions made.
 - (b) Explain simple perceptron learning algorithm with clearly mentioning all 07 assumed parameters.

OR

- (b) Describe in brief following factors affecting the performance of back 07 propagation neural network models.
 - i) Learning co-efficient
 - ii) Selection of number of hidden neurons/layers
- Q.3 (a) What is Associative Memory? Explain two layer models for associate 07 memory with necessary details.
 - (b) Consider six number of points in two dimensional Euclidian space (x,y) 07 as shown below. Input pattern coordinates

Point	X- coordinate	Y-coordinate
1	2	4
2	6	3
3	3	6
4	4	6
5	6	5
6	7	4

Determine:

number of clusters and cluster centers using VQ.

Assume threshold distance 3

OR

- Q.3 (a) Draw basic architecture for Hebb networks. Write algorithm for Hebb 07 Learning.
 - (b) Explain concept of linear reparability. Apply Hebb net to the training patterns that define NAND function with bipolar input and targets. Critically evaluate result.

Q.4	(a)	What is stability –plasticity dilemma? Explain how the same can be	07		
		resolved by Basic ART architecture.	. –		
	(b)	Discuss application of neural networks in any pattern recognition problem in brief.	07		
		OR			
Q.4	(a)	Explain in brief; different basic architectures of neural network.	07		
Q.4	(u) (b)	List applications of neural networks in following domains:	07		
V -1	(0)				
		(mention at least two in each domain)			
		a) Optimization			
		b) Forecasting and risk management			
		c) Control system.			
		- Out of all above listed application, for any one application, clearly mention only class/type of neural network and corresponding parameters to be used.			
05	(\mathbf{a})	Discuss solution of EVOD problem in contact of following:	07		
Q.5	(a)	Discuss solution of EXOR problem in context of following:	07		
		a) Macculo-pits model			
		b) Perceptron			
		c) Back propagation network			
		d) RBF network			
	(b)	Explain NARX model for recurrent network architectures in brief.	07		
		OR			
Q.5	(a)	Explain State-space model architecture for dynamic recurrent NN in brief.	07		

(b) Explain Radial Basis Function networks with necessary details. 07
