Seat No.:	Enrolment No.
3een 11e	Biti clintetti 1101

GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER – I • EXAMINATION – WINTER • 2013

Su	bject	Code: 710902N Date: 26-12-2013	
Su	bject	Name: Dynamics of Machinery	
Tiı	ne: 1	0.30 am – 01.00 pm Total Marks: 70	
Ins	struc	etions:	
	1.	Attempt all questions.	
		Make suitable assumptions wherever necessary.	
	3.	Figures to the right indicate full marks.	
Q.1	(a)	Formulate the mathematical model of the cam and follower system considering	07
	(b)	their elasticity. What do you mean by 'Automatic Control System'? Explain with example the term 'Adaptive Control'.	07
Q.2	(a)	Discuss about the 'Auto-correlation' function and their properties.	07
ν	(b)		07
		OR	
	(b)	Explain with suitable example the Johnson's numerical analysis used for camfollower system.	07
Q.3	(a)	What is the significance of the transfer function of the control system? Obtain the inverse Laplace transform of the following transfer functions:	07
		(i) $\frac{2s+5}{s(s+4)}$ (ii) $\frac{s+6}{s(s^2+4s+3)}$	
	(b)	Write a short note on 'Noise Measurement and Control'.	07
		OR	
Q.3	(a)	A single cylinder vertical petrol engine of total mass 200 kg is mounted upon a steel chassis frame. The vertical static deflection of the frame is 2.4 mm due to the weight of the engine. The reciprocating parts of the engine have a mass of 9 kg and move through a vertical stroke of 160 mm with SHM. A dashpot is provided with a damping resistance of 1000 N-s/m. Determine the speed of the driving shaft at which the resonance will occur and the amplitude of steady state vibrations when driving shaft of the engine runs at 500 rpm.	07
	(b)	With neat sketch, explain the 'Phase Plane Method' for analysis of the jump phenomenon for cam-follower system.	07
Q.4	(a)	Discuss about the stability of the system whose characteristic equation is given as $3s^7 + 9s^6 + 6s^5 + 4s^4 + 7s^3 + 8s^2 + 2s + 6 = 0$, by Routh criteria.	07
	(b)	State and justify the assumption/s and consideration/s made for deriving the governing equation of acoustic sound wave. OR	07
Q.4	(a)	By using the standard notations, derive an equation of motion of the torsional vibrations of a continuous shaft of uniform cross-section.	07
	(b)	State the common techniques used for noise and vibration control and explain briefly any one from each of them.	07
Q.5	(a)	Explain the different terms involved in case of 'Root Locus Technique' with suitable example and neat sketch/s.	07

(b) Derive the suitable expression of transverse vibration for Fixed-Free beam of length *l* with uniform cross section and carrying a uniformly distributed load in usual notations.

OR

- Q.5 (a) What you mean by 'Stability' of the control system? Explain any one of the criteria used for stability investigation.
 - (b) Explain the following terms: vibration isolation and force transmissibility. 07
