Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER – I • EXAMINATION – WINTER • 2013

Subject code: 711001N Subject Name: Cryogenic Fundamentals Time: 10.30 am – 01.00 pm Instructions:

Date: 23-12-2013

Total Marks: 70

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- **3.** Figures to the right indicate full marks.
- 4. Use charts and tables is permitted.
- Q.1 (a) Describe the effects of temperature on Ultimate Strength and Fatigue Strength of 07 S.S.-304, Aluminium, Titanium and Teflon.
 - (b) Define lattice specific heat. Also determine the lattice specific heat of copper at 07 80 K if copper has a molecular weight of 63.54 g/mol and Debye temperature for copper is 310 K and $C_{\nu}/R = 1.566$.
- Q.2 (a) Enlist various physical properties of Helium 4 cryogen. Also draw the phase 07 diagram for it.
 - (b) Enlist several types of insulation that can be used in cryogenic equipments. Also 07 give comparison of Gas filled powders/fibers insulation and Expanded foam insulation.

OR

- (b) Describe the analysis to calculate the heat inleak for the double walled vacuum 07 insulated vessel.
- Q.3 (a) Explain construction and working of vapour-pressure thermometer with neat 07 figure. Also derive the equation for its sensitivity.
 - (b) Determine the pressure to which hydrogen gas (R=4124 J/kgK, $\gamma = 1.41$) must be **07** reduced in order that the heat flux by molecular conduction through the gas be limited to 30 W/m². The two surfaces enclosing the gas may be considered as infinite planes at temperature of 300 K and 78 K. The pressure gauge is at 300 K.

OR

- Q.3 (a) Explain construction and working of Turbine flow meter with figure. 07
 - (b) Determine the mean apparent thermal conductivity of MLI between (a) 300 K 07 and 20.5 K (b) 20.5 K and 4.4 K, if the insulation is made up of 25 layers/cm of aluminium foil ($\varepsilon = 0.05$) and fiber glass paper ($h_c = 85 \text{ W/m}^2\text{K}$).
- Q.4 (a) Write short notes on followings superconductive devices. 07

(a) Cryotrons (b) Tunnel Diodes

(b) A carbon resistance thermometer has the following electric resistance values: 07 1460 ohms at 4.2 K, 133 ohms at 77.3 K and 100 ohms at 300 K. Determine the constants in the Callendar-van Dusen equation if $R_0 = 25$ ohms.

1

	<u>.</u>	-
()	ĸ
•		

Q.4	(a)	Describe the methodology to measure the liquid level in $10 \text{ m}^3 \text{ LN}_2$ horizontal stationary storage tank with fixed electric resistance liquid level gauge.			
	(b)	Describe construction and working of a typical Cryo-probe used for treatment of warts with necessary figure.			
Q.5	(a)	Describe about following physiological hazards. (i) Frostbite (ii) Nitrogen Asphyxiation	07		
	(b)	Describe about flammability hazards associated with oxygen.			
		OR			
Q.5	(a)	Describe the precautions to be taken during handling liquid nitrogen for industrial application.	07		
	(b)	Describe chemical propulsion system with necessary figure.			
