Seat No.: _____

Enrolment No._____

GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER – I • EXAMINATION – WINTER • 2013

•		code: 711103N Date: 03-01-2014	
Time	e: 1(Name: Fluid Mechanics and Gas Dynamics 0.30 am – 01.00 pm Total Marks: 70	
Instructions:			
	2.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	(a)	Differentiate between (i) Langrangian and Eulerian methods of representing fluid flow. (ii) The rotational and irrotational flows	07
	(b)	For an incompressible fluid the velocity components are:	07
		$u = x^{3} - y^{3} - z^{2}x$, $v = y^{3} - z^{3}$, $w = -3x^{2}z - 3y^{2}z + \frac{z^{3}}{3}$	
		Determine whether the continuity equation is satisfied.	
Q.2		Derive the Euler's equation of motion.	07
	(b)		07
		120 litres/sec of water in 4 seconds.(i) What pressure gradient must exist to produce this acceleration?	
		(ii) What is the difference in pressure intensity that exists between two sections	
		that lie 9 m apart?	
		OR	
	(b)	flow of an incompressible fluid $u = Cyz$; $v = Czx$; $w = Cxy$ where $C = \text{constant}$.	07
0.0		State whether the flow is rotational or irrotational?	
Q.3	(a)		07
	/ • \	(i) Show that the flow is possible. (ii) Derive the relative stream function.	~-
	(b)		07
		(<i>i</i>) $\psi = 3xy$ (<i>ii</i>) $y = 3x^2y - y^3$	
0.1		OR	07
Q.3	(a)	Show that a circle in ξ – plane displaced from the origin is mapped to an aerofoil in the physical z-plane via the Joukowski transformation.	07
	(h)	A source of strength 10 m ² /s at $(1, 0)$ and a sink of the same strength at $(-1, 0)$ are	07
	(0)	combined with a uniform flow of 25 m/s in the negative x-direction. Determine the	07
		size of Rankine body formed by the flow and the difference in pressure between a	
		point far upstream in the uniform flow and the point $(1, 1)$.	
Q.4	(a)	Obtain an expression in differential form for continuity equation for one-dimensional compressible flow.	07
	(b)		07
OR			
Q.4	(a)	Define the following terms:	07

- (i) Subsonic flow (ii) Sonic flow (iii) Supersonic flow (iv) Mach cone
- Q.4 (b) What is the critical pressure ratio for a compressible flow through a nozzle? On what 07 factors does it depend?

- Q.5 (a) Enumerate different laws on which models are designed for dynamic similarities? 07 Where are they used?
 - (b) Describe Buckingham's method to formulate a dimensionally homogeneous equation 07 between the various physical quantities affecting a certain phenomenon.

OR

- Q.5 (a) What is Mach number? Why is this parameter so important for the study of flow of 07 compressible fluids?
 - (b) For a normal shock wave in air Mach number is 3. If the atmospheric pressure and air **07** density are 27 kN/m² and 0.456 kg/m³ respectively, determine the flow conditions before and after the shock wave. Take $\gamma = 1.4$
