GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER – I • EXAMINATION – WINTER • 2013

		M. E.	- SEME	STER – I	• EXAM	INATION	N – WINT	'ER • 201.	3	
S	ubject	t code: 711	1306N				D	ate: 06-	-01-2014	
S	ubject	t Name: D	ecision	Models	in Mana	agement				
T	ime: 1	10.30 am –	01.00	pm			Tota	l Marks	:: 70	
I	nstru	ctions:								
	1	-	-							
	2					ecessary.				
		. 11guites to	the right	t mulcute I	un marks.					
Q.1	(a)	Explain – F	Feasible	solution, C	Optimal Sc	olution, De	generate S	Solution		07
	(b)	b) Solve the following LP problem graphically Maximize $Z = X_1 + 5X_2 + 3X_3$ Subject to								07
			$+2X_2 + X_2$	K ₃ =3						
			$-X_2 = 4$							
			X_2 and X							
Q.2	2 (a)	Write the pr	ocedure o	of North we	est corner n	nethod				07
	(b)	Determine	an initi	al basic fe	easible so	lution for	the follow	wing prob	olem using	07
		(b) Determine an initial basic feasible solution for the following problem u Least cost cell method.								
						Destinatio		_	Supply	
		0.1.1		A_1	B ₁	C_1	D_1	E_1		
		Origin	A B	$\frac{2}{1}$	11 4	10 7	3	7	4 8	
			Б С	3	9	4	8	12	9	
		Dema	and	3	3	4	5	6		
	(L)	Form the du	al of the	following		R				07
	(b)	 b) Form the dual of the following primal problem Maximize Z = 4X1 +10 X2 +25X3 Subject to 								07
		$X_1 + 4X_2 + 10X_3 \le 30$								
		$\begin{array}{l} 4X_1 + 10X_2 + 10X_3 <= 40 \\ 6X_1 + 8X_2 + X_3 <= 20 \end{array}$								
			X_2 and X							
Q.:	3 (a)	Discuss the	e steps of	f Dijkstra's	s algorithr	n.				07
										07
	(b)	Solve the following problem using Kuhn Tucker conditions Maximize $Z = 3X_1^2 + 10 X_1 X_2 - 8X_2^2$								
		Subject to								
		$3X_1 + 12X_2 \le 84$ X_1 and $X_2 \le 0$								
		Λ_1 d	mu 742 <-	- 0						
					ſ	R				

(b) Solve the following assignment problem using Hungarian method. The matrix 07 entries are processing time in hours.

	1 0	Operator						
		1	2	3	4	5		
Job	1	20	22	35	22	18		
	2	4	26	24	24	7		
	3	23	14	17	19	19		
	4	17	15	16	18	15		
	5	16	19	21	19	25		

Q.4 (a) Find the initial feasible solution of the following transportation problem using Northwest corner cell method

		Destinations					
		A1	B1	C1	D1	E1	
Origin	А	2	11	10	3	7	4
	В	1	4	7	2	1	8
	С	3	9	4	8	12	9
	Demand	3	3	4	5	6	

(b) Find the minimum spanning tree using Krushkal's algorithm

Arc	Distance	Arc	Distance			
1-2	4	4-7	12			
1-4	3	5-7	6			
1-5	5	5-8	8			
2-3	7	6-7	4			
2-4	8	6-10	8			
3-4	9	7-8	3			
3-6	10	7-9	5			
4-5	5	8-9	2			
4-6	8	9-10	4			
OR						

- Q.4 (a) Cars arrive at a restaurant with a mean arrival rate of 28 cars per hour and the service rate of the cars is 20 per hour. The arrival arte and the service rate follow poisson distribution. The number of parking space for cars is only 5. Find the standard result of this system
- (b) Discuss the advantages of simulation in Transportation Engg.
 Q.5 (a) Solve the following integer linear programming problem optimally
 07
- Maximize $Z = 2X_1 + 5X_2$ Subject to $3X_1 + 6X_2 \le 24$ $6X_1 + 12X_2 \le 18$ $2X1 + 8X2 \le 20$ $X_1, X_2 \ge 0$ and integers
 - (b) Explain the difference between Integer programming problem and Linear 07 programming problem.

OR

- Q.5 (a) What are the applications areas of dynamic programming? 07
 - (b) What are the types of simulation? Explain in details. 07

07

07