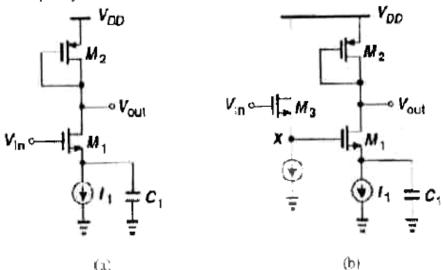
GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER – I • EXAMINATION – WINTER • 2013

Subject Code: 712602N Date: 26-12-2013

Subject Name: CMOS Circuit Design-I


Time: 10.30 am – 01.00 pm Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Draw the equivalent CMOS inverter circuit for Low to High transition and high to low transition. Also prove that if CMOS inverter is switched ON and OFF f times per second, the dynamic power consumption is $Pdyn = C_L \ V_{DD}^2 f$
 - (b) Discuss importance and impact of scaling in VLSI and compare full scaling 07 and fixed voltage scaling in detail.
- Q.2 (a) Discuss Manchester carry –chain adder. 07
 - (b) Explain carry save multiplier. 07

OR

- (b) Discuss Dynamic Threshold scaling (DTS) to reduce power consumption. 07
- Q.3 (a) Draw source follower circuit and its small signal equivalent circuit. Derive 07 voltage gain A_V and output resistance R_{OUT} .
 - (b) As shown in circuit (a), calculate the voltage gain if C1 acts as an ac short at 07 the frequency of interest.

- I) What is the maximum dc level of the input signal for which M1 remains saturated?
- II) To accommodate an input dc level close to Vdd, the circuit is modified as shown in (b). What relationship among the gate source voltages of M1-M3 guarantees that M1 is saturated?

OR

- **Q.3** (a) Discuss Multipole Systems for stability and frequency compensation.. **07**
 - (b) Explain any two second order effects in detail.

Q.4	(a)	Discuss Gilbert cell Why Gilbert cell consumes a greater voltage headroom	07
		than a simple differential pair?	
	(b)	Discuss Qualitative analysis of differential pair.	07
		OR	
Q.4	(a)	Discuss frequency response of common source stage.	07
	(b)	Draw high –frequency model of a cascade stage and explain.	07
Q.5	(a)	Explain the following:	07
	` /	(1) Basics of current mirror	
		(2) Folded cascode	
	(b)	Discuss basic cascode current mirrors.	07
		OR	
Q.5	(a)	Discuss simple op-amp topologies and cascade op-amps in brief.	07
	(b)	Discuss following performance parameters of op-amp:	07
		(1) Small Signal Bandwidth	
		(2) Large Signal Bandwidth	
		(3) Output Swing	
		\	
