Seat 1	Vo.: _				En	rolmen	nt No		
		GUJARAT TECHN M. E SEMESTER – I • 1							
Subject code: 712703N					Date: 03-01-2014				
Subject Name: Information Theory and C Time: 10.30 am – 01.00 pm Instructions:					Coding Total Marks: 70				
IIISU	1. 2.	Attempt all questions. Make suitable assumptions wherever in the right indicate full materials.		cessar	y.				
Q.1	(a) (b)	State and prove the Mcmillan's theorem What is entropy of source? Consider a discrete memory less source with source alphabet $S = \{s1, s2, s3\}$ with probabilities $p(s1) = \frac{1}{4}$, $p(s2) = \frac{1}{4}$, $p(s3) = \frac{1}{2}$. Find entropy of the source.							
Q.2	(a)	For zero memory sources emit six messages with following probabilities. Find 4-ary Huffman code. Determine average word length, efficiency and redundancy.							
		Messages	M1	M2	M3	M4	M5	M6	
		Original source probabilities	0.3	025	0.15	0.12	0.10	0.08	
	(b)	OR							
	(b)								
Q.3	(a) How convolution code differ from block code? Explain construct convolution code with example.								07
	(b) State and derive the Hamming bound for the linear block code. Whether golay's code (23,12) satisfy it exactly or not?								
0.2	OR O.3 (a) Describe comparison of coded and uncoded system								
Q.3	(a)	Describe comparison of coded and uncoded system							

(b) Describe in brief: (1) Channel capacity (2) Information rate **07 Q.4** Explain Kraft's inequality theorem with example **07** (a) Explain the viterbi's algorithm in detail with suitable example. **07 (b)** OR Differentiate between symmetric and asymmetric key cryptography. **07 Q.4** (a) Describe encryption based on large prime numbers **07 (b)** Define: Cryptosystem, cryptography, Encryption and decryption Q.5

07 (a) Explain data encryption standard algorithm **07** OR

Define Compression and write short note on loss less image compression. Q.5 (a) **07** State and derive the Hamming bound for the linear block code. **07**
