Sec	at No.:		
		GUJARAT TECHNOLOGICAL UNIVERSITY M. E SEMESTER – I • EXAMINATION – WINTER • 2013	
Subject code: 712902N Date: 26-12-20 Subject Name: Power Processing Circuits			
	•	0.30 am – 01.00 pm Total Marks: 70	
		tions:	
	1. 2. 3.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	(a) (b)	Explain the operation of thyristor with the use of two transistor analogy. Write a short note: P- Channel MOSFET.	07 07
Q.2	(a) (b)	Explain the operation of dual converter with circulating current mode. Discuss the operation of 1-phase full wave controlled rectifier with source inductance. Draw circuit diagrams & necessary waveforms for the same. OR	07 07
	(b)	With the use of circuit diagram & necessary waveforms, explain the operation of 3- phase full wave controlled converter with $\alpha = 30^{\circ}$.	07
Q.3	(a)	Derive the equation for duty cycle in terms of supply voltage & load voltage for cuk converter with necessary diagrams & waveforms.	07
	(b)	Explain the operation of UJT relaxation oscillator. OR	07
Q.3	(a)	The buck-boost regulator has following parameters: Input voltage = 12V, Duty cycle = 0.25, Switching frequency = $25kHz$, L = $150\mu H$, C = $220\mu F$, Average load current = 1.25A. Calculate (1) Average output voltage, (2) Peak to peak o/p voltage ripple, (3) Peak to peak ripple current of inductor, (4) Peak current of the transistor and (5) Critical values of L & C.	07
	(b)	Explain operation of push-pull converter.	07
Q.4	(a)	A 1-phase fully controlled bridge converter supplies an inductive load. Assuming that the output current is virtually constant and is equal to $I_d = 10A$. If supply voltages = 230V & firing angle = 30°, then determine (1) Average O/P voltage, (2) Supply RMS current, (3) Supply fundamental RMS current, (4)	07

Fundamental power factor, (5) Supply power factor, (6) Supply harmonic factor and (7) Voltage ripple factor. Give comparison between current source inverter and voltage source inverter. **07 (b)**

OR

- Explain the operation of 3-Phase full bridge inverter with 180° conduction **07** 0.4 mode. Draw the waveforms for Pole voltage, Phase voltages & Line voltages.
 - A single phase bridge inverter has a resistive load of 2.4 Ω & DC input voltage of 48 V. Determine (1) RMS o/p voltage at fundamental frequency, (2) O/P power, (3) Average & peak current of transistor, (4) PIV of transistor, (5) %THD and (6) %DF.
- Q.5 Enlist the types of 1-phase cycloconverter on the basis of its control strategy. **07** Explain any one with neat circuit diagram and waveform.
 - Explain class C commutation of SCR with necessary waveforms. **(b)**

OR

- Q.5 Describe half bridge dc-dc converter. Compare it with full bridge dc-dc (a) **07** converter.
 - Explain selective harmonic elimination technique for single pulse width 07 **(b)** modulated inverter output voltage. Derive necessary expression.

07

07