Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER - I • EXAMINATION - WINTER • 2013

Subject code: 713101N

Subject Name: Medical System Design

Time: 10.30 am - 01.00 pm

Instructions:

Date: 23-12-2013

Total Marks: 70

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Design a rectifier for a power supply of 30V/2A using transistorized series pass 14 element based linear voltage regulator with short circuit protection.
- Q.2 (a) Prove that "Inverting amplifier though commonly applied as a voltage in 07 voltage out circuit, when analyzed as negative feedback system is more properly treated as current in voltage out circuit".
 - (b) What is voltage to current converter? Explain how floating load converters are 07 useful as V to I converter.

OR

- (b) Describe grounded load V-I converter. Show the effects of resistance mismatch. 07
- (a) Explain dual op-amp instrumentation amplifier (IA). Compare its performance **Q.3** 07 with triple op-amp IA.
 - (b) Design a 4th order Butterworth high pass filter using the sallen-key 07 configuration. The filter must meet the following specification: gain A_{HPF}=1 and 3 dB cut off frequency f_c =668Hz. Butterworth polynomials a_1 =0.76536686, a₂=1.84775907

OR

- (a) Design a digitally programmable IA having an overall gain of 1V/V, 10 V/V, 0.3 07 100V/V, 1000V/V. Show the final design.
 - (b) Design a Butterworth low pass filter using Sallen-key configuration. The filter 07 must meet the following specifications: the stop band attenuation A_{min} = 54 dB, The pass band attenuation A_{max} = 3 dB. The passband frequency where attenuation is A_{max} f_c= 10KHz. The stop band frequency f_s=20KHz. Overall gain is unity. Butterworth polynomials $a_1=0.34729636$, $a_2=1$, $a_3=1.23208889$, a₄=1.78201305

Q.4	(a)	Explain the effect of finite GBP on integrator circuit. Draw circuit for passive and active compensation for integrators.	07
	(b)	Describe the peak detector circuits.	07
		OR	
Q.4	(a)	Explain auto zero and chopper stabilized op-amp circuits.	07
	(b)	Explain the precision full wave rectifier with necessary circuit diagram.	07
Q.5	(a)	Explain the band gap voltage reference.	07
	(b)	Write a short note on performance specifications fo DAC and ADC	07
	. /	OR	
~ -			

- (a) Explain power supply supervisory circuit and how OV/UV sensing and line loss 07 **Q.5** detection is performed. 07
 - (**b**) Write a short note on $\Sigma \Delta$ ADC.
