Enrolment No._____

GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER – I • EXAMINATION – WINTER • 2013

Su	ıbject	code: 714102NDate: 26-12-2013Name: Modern Digital and Wireless Communication0.30 am - 01.00 pmTotal Marks: 70	
	Instructions: 1. Attempt all questions.		
	2. 3.	Make suitable assumptions wherever necessary. Figures to the right indicate full mark.	
Q.1	(a)	A coin is tossed 4 times in succession in a trial of a random experiment. If a random variable X denotes the no. of tails appeared in the trial, then determine CDF of X. Also show that it is a non decreasing function.	(7)
	(b)	What is PDF? State its significance in the field of communication based on its properties. Describe Gaussian PDF in detail.	(7)
Q.2	(a) (b)	Explain GSM architecture. Explain interferences in mobile communication. OR	(7) (7)
	(b)	A source emits 7 messages with probabilities as 1/64, 1/2, 1/4, 1/64, 1/8, 1/32 and 1/16 respectively. Design Huffman binary source code and hence determine source entropy, average codeword length, code efficiency and code redundancy.	(7)
Q.3	(a) (b)	Explain briefly: path loss, shadowing, diffraction. For hexagonal cell geometry prove that $Q = \sqrt{3N}$, where $N = i^2 + ij + j^2$. OR	(7) (7)
Q.3	(a) (b)	Describe the concept of cell spitting with its limitations. Explain 2 ray reflection model for large scale propagation.	(7) (7)
Q.4	(a)	Discuss bandwidth efficiency of MPSK systems and show that they are better than MFSK systems.	(7)
	(b)	Construct a systematic cyclic code (7,4) using generator polynomial $g(x) = x^3+x^2+1$. What will be the corresponding transmitted data word if received data word r=1101101?	(7)
0.4	(a)	OR How do the convolution codes differ from linear block codes? Explain	(7)
Q.4	(a)	convolution code with example of $\frac{1}{2}$ convolution encoder.	(7)
	(b)	Describe BPSK and discuss about its constellation diagram and BER performance.	(7)
Q.5	(a)	Explain Rake receiver in detail.	(7)
	(b)	Describe coherence bandwidth and Doppler spread in detail. OR	(7)
Q.5	(a) (b)	Explain okumura model for large scale propagation with equations. Describe different diversity techniques in detail.	(7) (7)
