Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER – I • EXAMINATION – WINTER • 2013

Subject code: 714303N

Date: 03-01-2014

07

Subject Name: Theory of Elasticity & Plasticity Time: 10.30 am – 01.00 pm

Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1 (a) Is the following 2-D state of plane strain is possible? Check.

$$\varepsilon_X = 4x^3y + 3x^2 - 13.5x^2y^2 + 18y + 4$$

 $\varepsilon_Y = 4xy^3 + 6x - x^2 + 3y^2 + 5$
 $\varepsilon_{XY} = \frac{1}{2}\gamma_{XY} = -2x^2 - 1.5y^2 - 4.5x^3y - xy + 4$
(b) Using Sprift's construction find mercula and merculant charge strain

- (b) Using Swift's construction, find normal and resultant shear stress on a 07 plane whose normal has direction cosines are l=0.544, m= 0.766 and n=0.342 respectively w.r.t principal stresses p1= 650 MPa(tensile), p2=150 MPa (tensile) and p3=350 MPa (compressive).
- Q.2 (a) Derive the basic differential equation for beam column subjected to axial 07 compressive force P and distributed lateral load of intensity Q.
 - (b) Derive the critical load using energy approach for stability of column with 07 end condition as one end fixed and one end free.

OR

- (b) Using trigonometry series determine the value of critical load by assuming 07 suitable shape of curve. State the advantages of energy approach.
- Q.3 (a) Discuss imperfection approach and state the principle of imperfection for 07 stability of column.
 - (b) State the differential equation for the case of non-conservative forces for 07 column with one end fixed & one end free using static criteria of stability

OR

- Q.3 (a) Define co-efficient of end restrained using beam column theory. Derive 07 basic equations for statically indeterminate beam column with elastic restraints.
 - (b) Derive the standard equation for bucking of frames to get critical load. Use **07** symmetrical bucking.
- Q.4 (a) For the following state of stresses, find the principal stresses and the 10 direction cosines of any ONE principal stress. Normal stresses: $\sigma_{xx} = 350$ MPa, $\sigma_{yy} = 80$ MPa, $\sigma_{zz} = -70$ MPa, and Shear stresses: $\tau_{xy} = 80$ MPa, $\tau_{yz} = 10$ MPa, $\tau_{zx} = -60$ MPa,
 - (b) Write the compatibility equation for 2-D strains. From which derive the 04 equation $\nabla^4 \phi = 0$, where ϕ represents Airy's stress function.

OR

Q.4 (a) Calculate radial and transverse stresses at inner, outer and every quarter 07 thickness points and plot their variations using the following equations with usual notations:

Radial stress: $\sigma_r = -\frac{^{4M}}{_N} [a^2b^2/r^2 \ln (b/a) + b^2 \ln (r/b) + a^2 \ln (a/r)]$ **Tangential stress:** $\sigma_{\theta} = -\frac{^{4M}}{_N} [-a^2b^2/r^2 \ln (b/a) + b^2 \ln (r/b) + a^2 \ln (a/r) + b^2 - a^2]$ If, moment: M = 150 kJ, internal & external radii: a = 200 mm & b = 300 mm respectively. Here; N = $(b^2 - a^2)^2 - 4 a^2b^2 [\ln (b/a)]^2$

- (b) Derive basic differential equation of equilibrium in Cartesian co-ordinate 07 system.
- **Q.5** (a) Discuss energy approach for stability of columns & derive the general **07** equation to get critical load P using energy approach. ($P_{cr}=\beta l, \Delta v=\Delta T$)
 - (b) Find the linear strains: ε_{xx} , ε_{yy} and shear strain: γ_{xy} , if the linear strains **07** measured by the strain gauges in the direction are $\varepsilon_{25^\circ} = 90x10^{-3}$ (Tensile), $\varepsilon_{70^\circ} = -20x10^{-3}$ (Compressive) and $\varepsilon_{140^\circ} = 30x10^{-3}$ (Tensile). Also, calculate the state of stresses.

OR

- Q.5 (a) Discuss in details dynamic or vibration approach. Discuss any one 07 structural application.
 - (b) Drawing neat sketch, explain the soap-bubble analogy of torsion in and derive the 07 equation $\phi = (2 C \theta S/p) z$ with usual notations.
