Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

M. E. - SEMESTER - III • EXAMINATION - WINTER • 2013 Subject code: 730803 Date: 28-11-2013 **Subject Name: Soft Computing Methods** Time: 10.30 am - 01.00 pm**Total Marks: 70 Instructions:** 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. **07** Q.1 (a) What is soft computing? Discuss one application that shows the importance of soft computing. 07 (b) Show the important features and properties of Neuro-fuzzy hybrid systems in comparisons with neural network and fuzzy systems. **07** Q.2(a) Sketch and explain the architecture of biological neuron. Discuss the single layer neural network perceptron model. 07 Design a perceptron for the OR function binary inputs and unipolar targets shown as T x_1 x_2 0 0 0 The initial weights: $w_{01} = 0.1 \ w_{11} = 0.1, \ w_{21} = 0.2$. 0 1 1 The learning rate constant $\eta = 0.2$ and threshold = 0.5. 1 0 1 1 ----- OR ----- OR 07 (b) With suitable example explain Gauss elimination method. Preferably write MATLAB code for the same. Q.3 (a) Explain the various membership functions for crisp to fuzzy conversions. **07** (b) Differentiate the working principle between Neuro-Fuzzy Systems and Fuzzy **07** Neural Network. ----- OR ------ OR Q.3(a) Explain following terms with respect to Fuzzy systems 07 (i) **Fuzzification** (iii) Defuzzification (ii) Membership function (iv) Linguistic variables **(b)** Consider two fuzzy sets \tilde{A} and \tilde{B} as shown 07 $\tilde{A} = \left\{ \frac{0}{1} + \frac{0.5}{2} + \frac{0.3}{3} + \frac{0.7}{4} + \frac{0.9}{5} \right\} \text{ and } \tilde{B} = \left\{ \frac{0.2}{1} + \frac{0.4}{2} + \frac{0.6}{3} + \frac{0.9}{4} + \frac{0.4}{8} \right\}$

Find (i) $\widetilde{A} \cup \widetilde{B}$ (ii) $\widetilde{A} \cap \widetilde{B}$ (iii) $\overline{\widetilde{A}}$ (iv) $\widetilde{A}/\widetilde{B}$ (v) $\widetilde{A} \times \widetilde{B}$ (vi) $\widetilde{A} \square \widetilde{B}$

(vii) $\widetilde{A} \oplus \widetilde{B}$

1

Q.4	(a)	State the comparison between pattern mode and batch mode of training.	07	
	(b)	With respect to Game theory explain the negotiations method with suitable example.	07	
OR OR				
Q.4	(a)	Define software agents and show their role in negotiations with suitable example.	07	
	(b)	Explain the back-propagation training algorithm for the case when the activation function is an arctan function.	07	
Q.5	(a)	With suitable example, explain the crossover and mutation techniques used in the genetic algorithm process.	07	
	(b)	Solve the logical AND function using genetic algorithm by writing a program using a MATLAB code.	07	
OR OR				
Q.5	(a)	State key features of genetic algorithm. Explain in detail any one application which can be effectively solved using genetic algorithm.	07	
	(b)	Explain how Artificial neural network, Fuzzy logic and Genetic algorithm can be combined for certain applications.	07	
