GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER – III • EXAMINATION – WINTER • 2013

Subject code: 731602

Date: 28-11-2013

Subject Name: Computer Aided Product and Process Design Time: 10.30 am – 01.00 pm Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- **3.** Figures to the right indicate full marks.
- Q.1 (a) Discuss Heuristics for designing separation processes. 04
 - (b) Explain superstructure with modeling for reactor network synthesis with 10 specific example of your choice.
- Q.2 (a) Discuss the criteria of selection of spray tower and falling film absorber as 07 absorber.
 - (b) Explain the step-by-step process of selecting best sequence for ternary feed 07 mixture based on minimum vapor rates.

OR

(b) Consider a plant consisting of three stages that manufactures two products, 07 A and B. The demands are 600,000 kg/year for A and 300,000 kg/year of B, and the production time considered is 6000 hours. Data for processing time and size factors are as follows:

	Processing time (hr.)			Size Factors (m ³ /kg prod)			
	Stage 1	Stage 2	Stage 3	Stage 1	Stage 2	Stage 3	
А	4	2	3	2	5	3	
В	3	2	5	1.5	6	2	
Assume that both the products have same batch size							

Determine the size of vessels of a multi-product batch plant if the production cycle is of 500 hrs consisting of two campaigns: one for A and one for B. Only one vessel is to be used in each stage.

- Q.3 (a) Explain Geometrical concept for Attainable Regions for van de Vusse 07 reaction.
 - (b) You are to separate the following relatively ideally behaving mixture of A, 07 B, and C. The feed is at its bubble point of 345.8 K at 1 bar. The Underwood roots for the original feed are 1.116 and 2.826. The minimum vapor flow of the columns are as under:

 $\begin{array}{l} V_{min}(A/BC) &= 828 \; kmol/hr \\ V_{min}(AB/C) &= 254 \; kmol/hr \\ V_{min}(A/B) &= 830 \; kmol/hr \\ V_{min}(B/C) &= 183 \; kmol/hr \end{array}$

- Which sequence is to be preferred? Why?
- Explain the method of calculating marginal vapor flows. (Very approximate method.)

- Q.3 (a) Write a generalize MILP model for synthesizing distillation sequences for 07 any mixture of n components that is to be separated into pure components.
 - (b) For the objective to minimize the investment cost given fixed product 07 demand write MINLP design model for flow shop plants single product campaigns.

Q.4 Packed tower type scrubber is required for the following duty. 14

- (i) Feed gas : $15 \text{ kg/h HCl} + 15 \text{ kg/h Cl}_2 + 600 \text{ kg/h air}$
- (ii) Solvent : 10% NaOH solution
- (iii) Concentration of HCl and Cl_2 in exit gas: 20 mg/m³.
- (iv) Chemical Reactions :

 $2NaOH + Cl_2 == NaOCl + NaCl + H_2O$ $\Delta H_R = -24.65 \text{ kcal/mol}$

 $NaOH + HCl == NaCl + H_2O$

 $\Delta H_R = -31.4 \text{ kcal} / \text{mol}$

Calculate :

(a) Amount of solvent required. Tower diameter required for this scrubber is 0.36m.Specific heat of recirculating solvent is

0.9 kcal/ (kg.K). Poly propylene pall rings are selected as packing

material for which value of MWR is $4 \text{ m}^3/(\text{h.m}^2)$.

- (b) Calculate the number of overall gas phase transfer unit.
- (c) Calculate the height of packing required. Mass transfer coefficient, $K_{Ga}=272 \text{ kmol/(m^3.h)}$

OR

Q.4	(a)	Explain the following.	14
		(a) Equation-Tearing Procedure using Tridiagonal matrix algorithm for	
		multicomponent distillation.	
		(b) Calculation of shell side heat transfer coefficient by Bell's method.	
Q.5	(a)	Discuss the advantages and disadvantages of vacuum distillation over	07
		atmospheric distillation.	

(b) Discuss Tinker's Flow Model and significance of sealing strips.

OR

Q.5 Discuss Lewis-Matheson method for multicomponent distillation. Also 14 explain about how to start the second trial calculation and arrive on final solution.

07