GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER – III • EXAMINATION – WINTER • 2013

Subject code: 733001Date: 26-11-20Subject Name: Advance Process Optimization				
Tir	ne: 10).30 am – 01.00 pm Total Marks: 70		
Ins	1.	tions: Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.		
Q.1	(a)	 Explain the interpretations with examples for Zero coefficient in column. No positive ratio. Identical values of smallest positive ratio. While solving any linear programming problem using simplex method. 	07	
	(b)	A length of wire 100 cm is to cut in two parts. One portion is to be bent into the form of a circle, and the other into the form of a square. From where it must be cut, if the sum of the areas enclosed by the circle and square is to the least possible?	07	
Q.2	(a)	Find the area of the largest rectangle with its lower base on the x-axis and whose corners are bounded at the top by the curve $y = 16 - x^2$.	07	
	(b)	A poster is to contain 600 cm^2 of printed matter with margins of 6 cm at the top and bottom and 4 cm at each side. Find the overall dimensions that minimize the total area of the poster.	07	
		OR		
	(b)	Discuss: Artificial Neural Network.	07	
Q.3	(a)	Compare Two-point Equal Interval search, Dichotomous search, Golden Section search and Fibonacci search technique of Region Elimination with working equations of each.	07	
	(b)	Find the values of x_1 and x_2 which minimize the function, $y = x_1^2 + 4x_2^2 - 4x_1$ subject to the restriction that, $2x_2 - x_1 = 12$. Use Lagrangian Multiplier method.	07	
OR				
Q.3		Using the Powell method, conduct three stages of search seeking the minimum of the objective function 2 2 2	14	
		$y = x_1^2 + 3x_1^2 x_2 - 2x_1 x_2 x_3 + 5x_3^2$		

- Q.4 (a) Explain the concept and algorithm of Simulated Annealing technique with 07 example.
 - (b) Find the minimum of, $y = x_1^2 + 2x_2^2$ Subject to, $3x_1 + x_2 \ge 2$ $x_1 + 2x_2 \ge 3$ Using a penalty function method.

 $x_1 + x_2 + x_3 = 1$, $x_i \ge 0$

OR

Q.4	(a)	Explain TABU search optimization technique with algorithm and example.	07
	(b)	Discuss Ant Colony Optimization in detail.	07
Q.5		Maximize P with respect to x when it is subject to restrictions that	14
		$11x_1 + 3x_2 - 2x_3 \ge P$	
		$4x_1 + 5x_2 + x_3 \ge P$	
		$6x_1 + 10x_2 + 5x_3 \ge P$	
		$x_1 + 8x_2 + 12x_3 \ge P$	

OR

- Q.5 (a) Giving the examples of Integer and mixed integer programming, list out methods 07 to solve them discussing strength and weakness.
 - (b) Discuss optimization of Liquid-Liquid Extraction process. 07

07