
 1

Seat No.: ________                                                      Enrolment No.___________ 

GUJARAT TECHNOLOGICAL UNIVERSITY 
M. E. - SEMESTER – III • EXAMINATION – WINTER • 2013 

Subject code: 735206 Date:  28-11-2013 
Subject Name: Digital Signal Processing 
Time: 10.30 am – 01.00 pm Total Marks: 70 
Instructions: 

1. Attempt all questions.  
2. Make suitable assumptions wherever necessary. 
3. Figures to the right indicate full marks. 

 
Q.1 (a) For each of the following discrete-time systems, where y[n] and x[n] are, 

respectively, the output and input sequences, determine whether or not the 
system is (i) linear (ii)causal (iii) stable and (iv) shift-invariant: 
 

I. y[n] = n2. x[n] 
II. y[n] = x4[n] 
III. y[n] = x[n-5] 
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 (b) Let )( ωjeX  denote the DTFT of a real sequence x[n]. Express the inverse 
DTFT of y[n] for the below given )( ωjeY  in terms of x[n] 

I. ( ) ( ){ }2/2/

2
1)( ωωω jjj eXeXeY −+=  

II. ( )ωω 3)( jj eXeY =  
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Q.2 (a) Let x[n] = 0 ≤ n ≤ N-1, be an even length  sequence with an N-point DFT X[k],  
0 ≤ k ≤ N-1. Determine the N-point DFTs of the following length – N 
sequences in terms of X[k]: 

I. y1[n] = x[n] – x[N-1]; 
II. y2[n] = x[n] – x[n-(N/2)] 
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 (b) Let G[k] and H[k] denote the 7-point DFTs of the two length-7 sequences g[n] 
and h[n], respectively. If G[k] = {1+j2, -2+j3, -1-j2, 0, 8+j4, -3+j, 2+j5} and 
h[n] = g[(n-3)7], determine the H[k] without determining the DFT.  
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  OR  
 (b) Determine the Z-transform of the following sequence and its respective ROC. 

Assume |β| > |α|. Show their pole-zero plots and indicate clearly the ROC in the 
plot. 

I. x1[n] = (αn . u[-n-1]) + (βn . u[n])where u[n] is a unit step function 
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Q.3 (a) Consider the discrete-time system shown below. For H0(z) = 1+α.z-1, find a 
suitable F0(z) so that the output is a delayed and scaled replica of the input. 
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(b) An IIR system function is given below 
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Determine the magnitude response of the above transfer function and show that 
it has high-pass response. Scale the transfer function so that it has 0-dB gain at 
ω = π. Sketch the magnitude responses for k = 0.95, 0.9 and -0.5 respectively. 
 

  OR  
Q.3 (a) Show that the phase delay ( ) ( ) ωωθωτ /−=p of the first-order allpass transfer 

function ( ) 1
1

1
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zd
zdzA is given by ( ) ( ) ( )11 1/1 ddp +−≅ωτ  
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 (b) A causal stable LTI discrete-time-system is characterized by an impulse 

response ( ) ( ) ( ) ( ) ( )nununnh nn .25.0
12
1.5.0.

3
5][1 −++−= δ . 

Determine the impulse response ( )nh2  of its inverse system which is causal and 
stable. 
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Q.4 (a) Consider the below given two analog transfer functions H1(s) and H2(s) 
representing bandpass and bandstop systems respectively 
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If H1(s) and H2(s) can be expressed in the form 

 ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]; sAsAsH  ;  sAsAsH 212211 2
1

2
1

−=+=  

Where A1(s) and A2(s) are stable analog all-pass transfer functions. Determine 
A1(s) and A2(s) functions. 
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 (b) A continuous-time signal xa(t) is composed of a linear combination of 
sinusoidal signals of frequencies 250Hz, 450 Hz, 1.0kHz, 2.75kHz and 
4.05kHz. The signal xa(t)is sampled at a 1.5kHz rate and 3.0kHz and find the 
frequency component present in the reconstructed signals and justify the 
answer. 
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  OR  
Q.4 (a) Discuss in detail about the sampling a bandlimited signal in time domain and its 

effects in the frequency domain.  
 
Explain in detail about the relation between Ω (= 2πf) in radian/sec and ω in 
radian/sample. 
 
State and explain Niquist Theorem and Niquist Criterion. 
 

07 

 (b) Explain in detail about any two Analog to Digital Conversion systems and any 
two Digital to Analog Conversion systems. 
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Q.5 (a) The transfer function of a second order analog filter with a passband edge of 
0.16Hz and a passband ripple of 1dB is given by  

( ) ( )
13.106.1
95.17056.0
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By applying appropriate spectral transformation relation, determine the transfer 
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function ( )sH BP  of  an analog bandpass filter with a centre frequency at 3Hz 
and a bandwidth of 0.5Hz. 

 (b) Let HLP(z) denote the transfer function of a real-coefficient lowpass filter with a 
passband edge at ωp and stopband edge at ωs, passband ripple of δp and 
stopband ripple of δs. Consider a cascade of two identical filters with a transfer 
function of H(z). What are the passband and stopband ripples of the cascade at 
ωp and ωs, respectively. Generalize the results for a cascade of M identical 
sections 
 
Sketch the magnitude response of the transfer function 

( ) ( )  zeH and   zH j
LPLP

0ω− for πω ≤≤0  
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  OR  
Q.5 (a) Evaluate the Frequency Spectra of Hamming, Hann and Blackman Window 

functions of length (2M+1). Plot them.  
 
Compare the their mainlobe widths with the mainlobe width of same length 
Rectangular Window 
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 (b) Let ( )ωj
d eH denote the desired magnitude response of a real linear-phase FIR 

filter of length M. 
i. For M odd, show that the DFT samples H[k] needed for a frequency 

sampling – based design are given by  
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ii. For M odd, show that the DFT samples H[k] needed for a frequency 
sampling – based design are given by  
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