Enrolment No.____

GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER - II • EXAMINATION - WINTER • 2014

Subject code: 1720110

Time: 02:30 pm - 05:00 pm

Subject Name: Numerical Methods

Total Marks: 70

Date: 08-12-2014

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1 Define absolute and percentage errors. Let the exact value $=\frac{20}{3}$ and its approximate 07 **(a)** value = 6.666. Find the relative and percentage errors. Also find the number of significant digits.

Use Newtonøs divided difference formula to find f(x) from the following data: 07 **(b)**

<i>x</i> :	0	2	3	4	6	7
f(x):	0	8	0	-72	0	1008

- **Q.2** Find the real root of $x \tan x + 1 = 0$ using Bisection method correct up to the three 07 (a) decimal places.
 - Define different types of errors with suitable illustration. **(b)**

OR

Explain convergence criteria for Gauss- Seidal method. Use it to solve the system 07 **(b)** 30x-2y+3z=75, 2x+2y+18z=30, x+17y-2z=48 correct up to four decimal places.

Q.3 (a) Derive Simpson
$$\frac{1}{3}^{rd}$$
 rule. Estimate $\int_{0.5}^{1.3} e^{x^2} dx$ using Simpson rule with i) four strips ii) eight strips.

Using improved Eulerøs method, solve $y' = -2xy^2$ with initial condition y(0) = 1 and 07 **(b)** compute y(1) taking step size 0.2.

OR

Find the value of y at x = 21 and x = 28 from the following data: Q.3 (a)

	x: 20 23 26 29							9	
	<i>y</i> : 0.3420 0.3907 0.4384 0.4848								
(b)	(b) Fit a straight line to the following data:								07
	<i>x</i> :	100	120	140	160	180		200	
	<i>y</i> :	0.45	0.55	0.60	0.70	0.80		0.85	

Explain Newton-Rapshon method graphically. Use it to find the real root of **Q.4** 07 **(a)** $xe^{x} - 2 = 0$ correct up to three decimal places.

07

07

Define Numerical integration. The velocity v of a particle at distance s from a point on **(b)** 07 its linear path is given in the following data:

	s(m)	0	2.5	5.0	7.5	10.0	12.5	15.0	17.5	20.0
	v(m/sec)	16	19	21	22	20	17	13	11	9

OR

07

07

Q.4 (a) Use Runge-Kutta method of fourth order to find
$$y(1.1)$$
, given that

$$\frac{dy}{dx} = x - y, \ y(1) = 1 \text{ with } h = 0.05.$$
(b)
Find the inverse of $A = \begin{bmatrix} 2 & 4 & -6 \\ 1 & 5 & 3 \\ 1 & 3 & 2 \end{bmatrix}$ and also solve the system $AX = B$, where

$$B = \begin{bmatrix} -4 \\ 10 \\ 5 \end{bmatrix}.$$

- Q.5 Given that y(1) = 1.3 and y' = 3x + y. Use second order Runge-Kutta method to 07 **(a)** approximate y when x = 1.2 with h = 0.1
 - **(b)** Fit cubic spline for following data:

<i>x</i> :	$x_0 = 1$	$x_1 = 2$	$x_2 = 3$	$x_3 = 4$		
<i>y</i> :	$y_0 = 1$	$y_1 = 2$	$y_2 = 5$	$y_3 = 11$		
OP						

Define Interpolation. Find the Lagranges interpolating polynomial from the following Q.5 07 **(a)** data:

<i>x</i> :	0	1	4	5		
f(x):	1	3	24	39		

Hence find f(0.7).

Discuss False - Position method graphically. Use it to find real root of **(b)** $x^3 - 5x + 1 = 0$ correct up to four decimal places.
