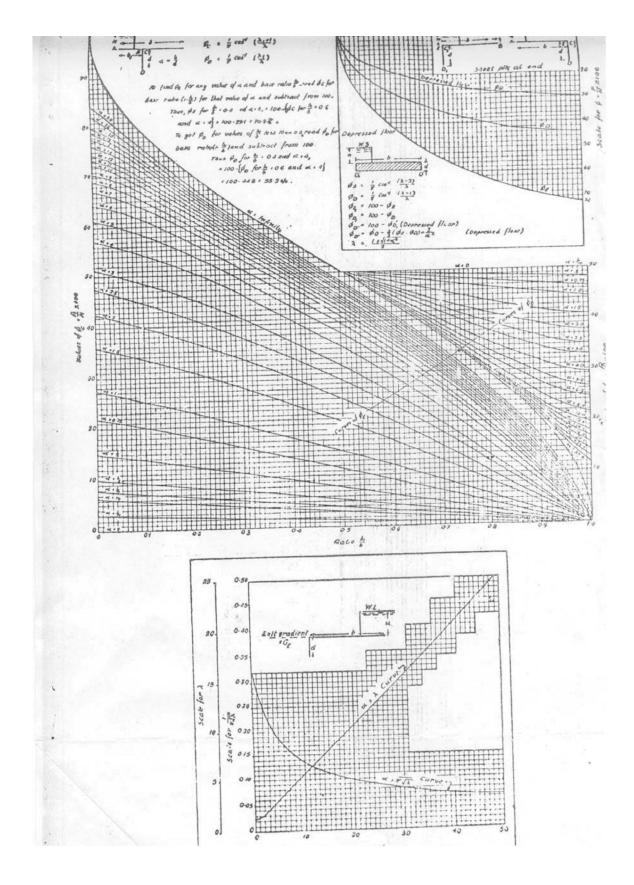
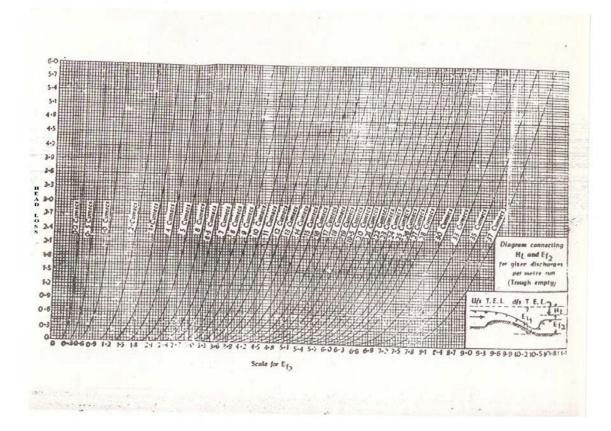
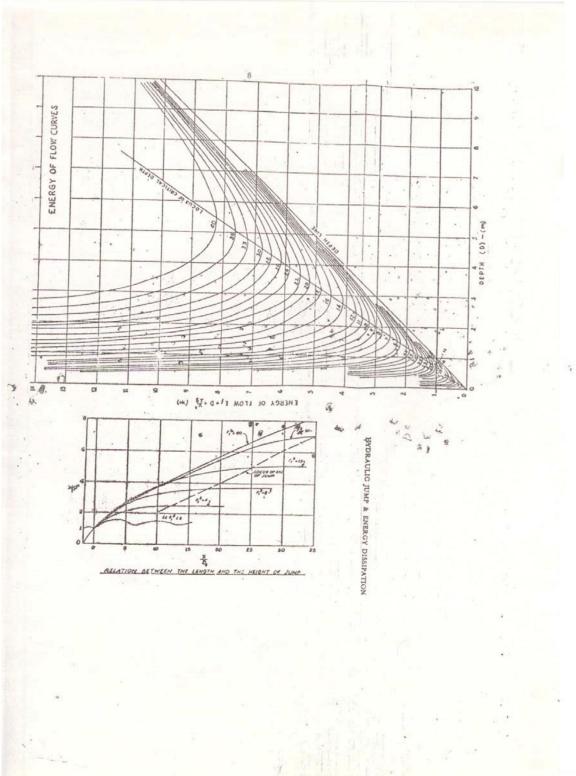
		GUJARAT TECHNOLOGICAL UNIVERSITY M. E SEMESTER – II • EXAMINATION – WINTER • 2014 code: 1721203 Date: 04-12-2014 Name: Design of Canal Network and Regulation Work		
Time: 02:30 pm - 05:00 pm Total Marks: 70				
Instructions:				
	2.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.		
Q.1	(a) (b)	Laceyøs theory is an improvement over Kennedyøs theory explain. Write short note on linings of canal.	07 07	
Q.2	(a)	What are outlets? Enumerate the different types of outlets and explain	07	
	(b)	any one briefly. An irrigation canal has been constructed with following parameters: Full supply discharge = 45 cumec Bed width = 30 meter Full supply depth = 1.8 meter Side slopes = $\frac{1}{2}$:1 Bed slope = 1 in 6600 Manning N =0.0225 Critical velocity ratio = 1 Check whether the section designed satisfies Kennedyøs theory. OR	07	
	(b)	Design an irrigation canal by Laceyøs theory for the following data: F.S.D = 14 m ³ /sec, f = 1, Side slopes $\frac{1}{2}$: 1 (Horizontal : Vertical), Coefficient of rugosity N = 0.0225	07	
Q.3	(a) (b)	Discuss laceyøs regime equations. Design a concrete lined channel to carry a discharge of 200 cumec at a slop of 0.1 per 1000. The side slopes of the channel are $1.25 : 1$ and N may be taken as 0.016 Velocity = 1.4 m/sec	07 07	
0.2	(a)	OR	07	
Q.3	(a) (b)	Explain Laneøs weighted creep theory. Determine the most efficient cross-section of a trapezoidal canal to carry the water at the rate of 15 cubic meter per second. To prevent scouring the maximum velocity is not to exceed 1 meter/second. The side slope of the canal $2:1$ (Horizontal : vertical). Take C = 60, determine bed slope for the canal.	07	
Q.4	(a)	What corrections are required in determining seepage pressure by method of independent variables	07	
	(b)	A horizontal apron of 16 m length a sheet pile is provided at 12 m distance from the upstream end. The sheet pile is of 4 m depth. The weir on the floor stores water upon 3 m height. Calculate uplift pressures at both faces of the sheet pile just below the floor and also at lower end of the sheet pile. OR	07	
Q.4	(a)	Discuss causes of failure on weirs on permeable foundation.	07	

(b) Two sheet piles of unequal length are provided at two ends below an impervious 07 floor of 12 m length. Total head created on the floor is 2 m. Using Khoslaøs method of independent variables calculate uplift pressures at the junction of inner faces of both piles with the floor. Take upstream pile 3 m deep and downstream pile 4 m deep.


Q.5 (a) Draw a neat sketch of siphon aqueduct and name various components. (b) Design a straight glacis fall on the branch canal with following particulars: 07


Full supply discharge $\frac{u/s}{d/s} = 14.5$ cumec Full supply level $\frac{u/s}{d/s} = \frac{40.00}{39.10}$ Full supply depth $\frac{u/s}{d/s} = 1.40$ m Bed width of canal $\frac{u/s}{d/s} = 9.2$ m Permissible exit gradient = 1/7 Calculate (1) crest dimensions (2) cistern dimension (3) Cut-off.


OR

		O N	
Q.5	(a)	Discuss the merits and demerits of notch type fall and sarda type fall.	04
	(b)	Design a siphon aqueduct with the following data:	10
	, í	(1) Canal :	
		Discharge 20 cumec	
		Bed width 18 m	
		Depth of water 1.30 m	
		Bed level 250 m	
		(2) Drainage:	
		High flood discharge 200 cumec	
		High flood level 250.70 m	
		Bed level 248.50	
		General ground level 250.00 m	
		Calculate: (1) drainage water way .(2) canal water way (3) head loss and bed	
		level at different sections (4) transitions	
