Date: 08-12-2014

Total Marks: 70

GUJARAT TECHNOLOGICAL UNIVERSITY

M. E. - SEMESTER – II • EXAMINATION – WINTER • 2014

Subject code: 1722309

Subject Name: Numerical Methods

Time: 02:30 pm - 05:00 pm

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Write algorithm of Newton Raphson Method. Also, explain its pitfalls. 07
 - Use Bisection method 07 to determine drag coefficient c for a **(b)** parachutist after free falling, using the nonlinear equation $f(c) = \left(\frac{667.38}{c}\right) (1 - e^{-(0.146843c)}) - 40 = 0$. Taking initial guesses (14.5 15) and

stopping criteria 0.5%.

- Q.2 (a) Give geometrical interpretation of False Position method and use it to find the 07 real root of $f(x) = xe^{x} 2 = 0$ which lies between 0.8 and 0.9 correct to three decimal places.
 - (b) What is mathematical modeling? Develop a model to find the velocity v of a freely falling parachutist as a function of time assuming that the air resistance is linearly proportional to v, How can you solve the problem numerically?

OR

(b) Use following table to compute value of the Bessel function J₀(x) for
1) x=1.72 using Newtonøs forward difference interpolation formula and
2) x=1.93 using Newtonøs backward difference interpolation formula

2) x -1.95 using	INEWIOIIgs Dacky	valu unierence i	interpolation ion	nuia.
Х	1.7	1.8	1.9	2.0
f(x)	0.397 9849	0.339 9864	0.281 8186	0.223 8908

Q.3 (a) Describe Algorithm for the Gauss- Seidel Method.

- (b) 1) What is partial pivoting? Why do we use it?
 - 2) Use Gauss Elimination method to solve the following system of equations. 3x + 2y + z = 10
 - 2x + 3y + 2z = 14x + 2y + 3z = 14

OR

Q.3 (a) For a spring mass system, following equations are obtained. Use Gauss Jordan 07 method to find displacements x_1, x_2, x_3

$$30x_1 - 20x_2 = 19.6$$

-20x₁ + 30x₂ - 10x₃ = 29.4
-10x₂ + 10x₃ = 24.5

(b) The following system of equations was generated by applying Kirchhofføs law to an electric circuit. Use Gauss Seidel method upto three iterations to determine the currents I_1 , I_2 and I_3 .

$$3I_1 - 0.1I_2 - 0.2I_3 = 7.85$$

$$0.1I_1 + 7I_2 - 0.3I_3 = -19.3$$

$$0.3I_1 - 0.2I_2 + 10I_3 = 71.4$$

07

07

07

- Derive normal equations for polynomial regression to fit a second degree 07 **O.4 (a)** polynomial for the given data points (x_i, y_i) , i = 1, 2, ... n using least square method.
 - Fit first order Spline to the data given in the following table. Also, evaluate the 07 **(b)** function at x = 5.

x	3	4.5	7	9
f(x)	2.5	1.0	2.5	0.5
OR				

What is difference between the two methods of curve fitting, namely Regression Q.4 **(a)** 07 and interpolation?

> The voltage v across a capacitor at time t second is given by the following table: Use the method of least square to fit a curve $v = ae^{kt}$ to this data.

_		e a er reast ser			to time autur	
ſ	t	0	2	4	6	8
	v	150	63	28	12	5.6

(b) The following data was taken from an experiment. Use linear regression to 07 fit a straight line for data given in the following table. Also, find the standard error of the estimate.

Х	1	2	3	4	5	6	7
Y	0.5	2.5	2.0	4.0	3.5	6.0	5.5

1) Why do we need methods of Numerical Integration? Q.5 (a)

02 05

2)A wind force distributed against the side of a skyscraper is measured as									
Height	0	30	60	90	120	150	180	210	240
L (m)									
Force	0	350	1000	1500	2600	3000	3300	3500	3600
F(N/m)									

Calculate the net force using Simpsonøs 1/3 rule.

Use Runge Kutta forth order method to calculate y(0.2) given **(b)** 07 $\frac{dy}{dx} = x + y$, y(0) = 1, taking h=0.1.

OR

Use Heunøs method to integrate $y' = \frac{2y}{x}$ y(1) = 2 to estimate y(1.5), taking Q.5 07 **(a)**

step size h=0.25 and only one iteration in the corrector step.

(b) A steady state heat balance for a 10-m rod can be represented as 07 $\frac{d^2T}{dx^2}$ + h'(T_a - T) = 0 with h' = 0.01m⁻², T_a = 20°C, T(0) = 40 and T(10) = 200

Use the finite difference approach with $\Delta x = 2$ m to solve the boundary value problem.
