GUJARAT TECHNOLOGICAL UNIVERSITY

M. E. - SEMESTER - II • EXAMINATION - WINTER • 2014 Date: 04-12-2014

Subject code: 1723903

Subject Name: Thermal Equipment Design (Mechanical) **Total Marks: 70**

Time: 02:30 pm - 05:00 pm

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Use of Property tables, steam tables and refrigeration tables are permitted.
- **Q.1 (a)** What is NTU? Explain NTU method for counter flow type heat 07 exchanger.
 - (b) In a double pipe counter flow heat exchanger, water is heated from 0725°C to 65°C by an oil with a specific heat of 1.45 KJ/KgK and mass flow rate of 0.9 kg/s. The oil is cooled from 230°C to 160°C. If the overall heat transfer co-efficient is 420 W/m²⁰C, calculate (i)Rate of Heat transfer(ii)The mass flow rate of water (iii)the surface area of heat exchanger.
- State the advantages of double pipe heat exchangers. Q.2 **(a)**

07 07

07

(b) A double pipe heat exchanger is employed to heat raw water ($m_c = 5$

kg/s) from 15[°] to 65[°]C using waste hot water ($m_{\rm h} = 4.8$ Kg/s) cooled in the process from 95° to 75°C. The hot water flows in the inner tube (ID = 40mm, OD = 48mm) in counter flow to the raw water which flows in annulus (ID = 75mm, OD = 90mm). Calculate the total length of heat exchanger. Consider $K_W = 60 \text{ W/m}^{-0} \text{K}$.

OR

(b) A double pipe heat exchanger is employed to heat raw water ($m_c = 5$

kg/s) from 15° to 65° C using waste hot water ($m_{\rm h} = 4.83$ Kg/s) cooled in the process from 95 to 75° C. The hot water flows in the inner tube (ID = 40.94mm, OD = 48.3mm) with 32 nos of longitudinal carbon steel fins (Fin Width = 0.89mm, Fin Height = 12.7mm & Root Width W_r = 4.02mm) in counter flow to the raw water which flows in annulus (ID = 75mm,OD = 89mm). Calculate the efficiency of the fin. Consider K_{fin} $_{\text{material}} = 60 \text{ W/m}^{0}\text{K}.$

Q.3 (a) Explain shell and coil type condenser. A single pass shell & tube heat exchanger is to be designed to heat raw

07

07 **(b)** water at 17° C (m_{c} =8.33 kg/s, Cp = 4184 J/kgK) by use of condensed

water ($m_{\rm h} = 13.89 \text{ Kg/s}$) at 67° C and 0.2bar which will flow in the shell side. A fouling resistance of 0.000176m².K/W is suggested and the surface over design should not be over 35%. A max. coolant velocity of 1.5 m/s is suggested to prevent erosion. Tube material is carbon steel $(K = 60 \text{ W/mK}, \text{ID}=16 \text{mm}, \text{OD} = 19 \text{mm}, L_{\text{max}} = 5 \text{m})$ laid out of square pitch with pitch ratio of 1.25. The baffle spacing is approx. by 0.6 of shell diameter and baffle cut is set to 25%. The permissible max.

pressure drop on the shell side is 0.5 psi. The water outlet temp, should not be less than 40° C.Assume $h_i = 4000 \text{ W/m}^2$ K and $h_o = 5000 \text{ W/m}^2$ K. Estimate shell diameter and no. of tubes. Assume F = 0.9 & L = 3m

OR

- Q.3 (a) Explain plate type evaporator with neat sketch.
 - (b) The following are the values measured on a shell-and-tube ammonia 07 condenser:

Velocity of water flowing through the tubes, V m/s	1.22	0.61
Overall heat transfer co-efficient, $U_0 W/m^2 K$	2300	1570

Water flowed inside the tubes while refrigerant condensed outside the tubes (OD-51mm, ID-46mm, K = 60 W/mK.). Using the concept of Wilson s plot, determine the condensing heat transfer coefficient. What is the value of overall heat transfer coefficient when the velocity of water is 0.244 m/s?

Q.4 (a) Explain measurements and observations involved in the performance 07 assessment of the cooling towers.

- (b) The findings of one typical trial pertaining to the Cooling Towers of a 07 Thermal Power Plant 3 x 200 MW is given below:
 - * Unit Load 1 & 3 of the Station = 398 MW
 - * Mains Frequency = 49.3
 - * Inlet Cooling Water Temperature $^{\circ}C = 44$ (Rated 43 $^{\circ}C$)
 - * Outlet Cooling Water Temperature $^{\circ}C = 37.6$ (Rated 33 $^{\circ}C$)
 - * Air Wet Bulb Temperature near Cell $^{\circ}C = 29.3$ (Rated 27.5 $^{\circ}C$)
 - * Air Dry Bulb Temperature near Cell $^{\circ}C = 40.8^{\circ}C$
 - * Number of CT Cells on line with water flow = 45 (Total 48)
 - * Total Measured Cooling Water Flow $m_3/hr = 70426.76$
 - * Measured CT Fan Flow $m_3/hr = 989544$

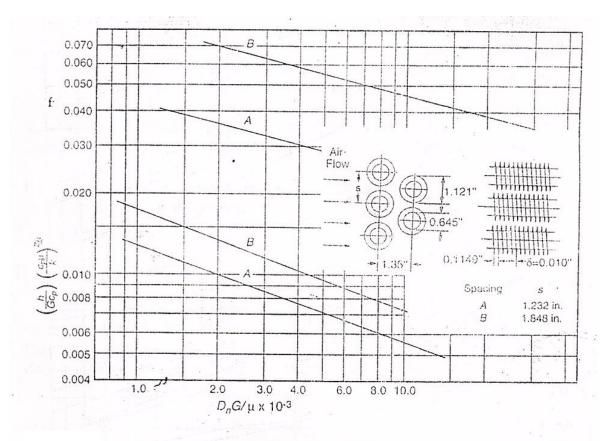
Analyze the cooling tower and comment on the results obtained in the analysis.

OR

- Q.4 (a) Write a short note on evaporative cooling tower. 07
 - (b) Explain the components of cooling tower.

07

07


07

- Q.5 (a) What is a compact heat exchanger? Give the classification of compact 07 heat exchanger.
 - (b) Air at 1 atm and 400 K with a velocity of 10 m/s flows across a 07 compact heat exchanger as shown in FIGURE 1 and exits with a mean temperature of 300 K. The core is 0.6 m long. Calculate the total frictional pressure drop between the air inlet and outlet and the average heat transfer coefficient on the air side.

OR

- Q.5 (a) Write short note on Rotary type regenerator.
 - (b) A rotary regenerator, with a rotational speed of 10 rpm, is used to 07 recover energy from a gas stream at 250° C flowing at 10 kg/s. This heat is transferred to the airstream at 10° C, also flowing at 10 kg/s. The wheel depth is 0.22 m and diameter 1.6 m, so that its face area is approximately 1.8 m². The mass of the matrix is 150 kg with a surface-to-volume ratio of 3000 m²/m³, and the mean specific heat of the matrix material is 0.8 kJ/kg.K. The heat transfer coefficient for both fluid streams is 30 W/m² K. The mean isobaric specific heat of the gas is 1.15 kJ/kg. K and that of air is 1.005 kJ/kg.K. The flow split gas : air = 50% : 50%. For a counterflow arrangement, calculate the following values:

- (a) The regenerator effectiveness
- (b) The rate of heat recovery and the outlet temperatures of air and gas
- (c) The rate of heat recovery and the outlet temperatures of air and gas if the rotational speed of the wheel is increased to 20 rpm
- (d) The rate of heat recovery and the outlet temperatures of air and gas if the rotational speed of the wheel is reduced to 5 rpm

Heat transfer and friction factor for flow across finned-tube matrix. Surface CF-8.7-5/8 J: tube OD = 1.638 cm; fin pitch = 3.43/cm; fin thickness = 0.0254 cm; fin area/total area = 0.862; air-passage hydraulic diameter, D_h = 0.5477 cm (A), 1.1673 cm (B); free-flow area/frontal area, σ = 0.443 (A), 0.628 (B); heat transfer area/total volume = 323.8 m²/m³ (A), 215.6 m²/m³ (B).

Temp. 7, *C	Density p. kg/m ³	Specific Heat Co. J/kg + K	Thermal Conductivity k, W/m + K	Thermal Diffusivity α , m ² /s ²	Dynamic Viscosity µ, k⊄/m - s	Kinematic Viscosity r. m²/s	Prandtl Number Pr
-150	2.866	983	0.01171	4.158×10^{-6}			
-100	2.038	966	0.01582	8.036×10^{-6}	8.636 × 10 ⁻⁶	3.013×10^{-6}	0.724
-50	1.582	999	0.01979	1.252 × 10-5	1.189×10^{-6}	5.837×10^{-6}	0.726
-40	1.514	1002	0.02057	1.356×10^{-5}	1.474 - 10-5	9.319×10^{-6}	0.7440
-30	1.451	1004	0.02134	1.465×10^{-5}	1.527×10^{-5}	1.008×10^{-5}	0.7436
-20	1.394	1005	0.02211	1.578×10^{-5}	1.579 × 10-5	$1.087 imes10^{-5}$	0.742
-10	1.341	1006	0.02288	1.696 × 10 ^{-b}	1.630×10^{-5}	$1.169 imes 10^{-5}$	0.7408
0	1.292	1006	0.02364	1.818 × 10 ⁻⁵	1.680×10^{-5}	1.252×10^{-5}	0.7387
5	1.269	1006	0.02401	1.818×10^{-5}	1.729 × 10-5	1.338×10^{-5}	0.7362
10	1.246	1006	0.02439	1.944×10^{-5}	1.754×10^{-5}	1.382×10^{-5}	0.7350
15	1:225	1007	0.02439	2.009×10^{-5}	- 1.778 × 10 ⁻⁵	1.426×10^{-6}	0.7336
20	1.204	1007	0.02514	2.009×10^{-5} 2.074×10^{-5}	1.802×10^{-5}	$1.470 imes 10^{-5}$	0.7323
25	1.184	1007	0.02551	2.074×10^{-5} 2.141×10^{-5}	1.825×10^{-5}	$1.516 imes10^{-5}$	0.7309
30	1.164	1007	0.02588	2.208×10^{-5}	1.849×10^{-5}	1.562×10^{-5}	0.7298
35	1.145	1007	0.02625		1.872×10^{-5}	1.608×10^{-5}	0.7282
40	1.127	1007	0.02625	2.277×10^{-5}	1.895×10^{-5}	$1.655 imes 10^{-5}$	0.7268
45	1.109	1007	0.02699	2.346×10^{-5}	1.918×10^{-5}	1.702×10^{-5}	0.7255
50	1.092	1007	0.02735	2.416×10^{-5}	1.941×10^{-5}	$1.750 imes 10^{-5}$	0.7241
60	1.059	1007	0.02808	2.487×10^{-5}	1.963×10^{-5}	1.798×10^{-5}	0.7228
-70	1.028	1007	0.02881	2.632×10^{-5}	2.008×10^{-5}	$1.896 imes10^{-5}$	0.7202
80	0.9994	1008	0.02953	2.780×10^{-5}	2.052×10^{-5}	$1.995 imes 10^{-5}$	0.7177
90	0.9718	1008	0.03024	2.931×10^{-5}	2.096×10^{-5}	$2.097 imes10^{-5}$	0.7154
100	0.9458	1008	0.03095	3.086 × 10 ⁻⁵	2.139 × 10-5	2.201×10^{-5}	0.7132
120	0.8977	1011	0.03095	3.243×10^{-5}	2.181×10^{-5}	2.306×10^{-5}	0.7111
140	0.8542	1011		3.565×10^{-5}	2.264×10^{-5}	2.522×10^{-5}	0.7073
160	0.8148	1013	0.03374	3.898×10^{-5}	2.345×10^{-5}	2.745×10^{-5}	0.7041
180	0.7788	1018	0.03511	4.241×10^{-5}	$2.420 imes 10^{-5}$	$2.975 imes 10^{-5}$	0.7014
200	0.7459	1019	0.03646	4.593×10^{-5}	2.504×10^{-5}	3.212×10^{-5}	0.6992
250	0.6746	1023	0.03779	4.954×10^{-5}	2.577×10^{-5}	3.455×10^{-5}	0.6974
300	0.6158	1033	0.04104	5.890 × 10 ⁻⁵	2.760×10^{-5}	$4.091 imes 10^{-5}$	0.6946
350	0.5664	1044	0.04418	6.871×10^{-5}	2.934×10^{-5}	4.765×10^{-5}	0.6935
400	0.5243		0.04721	7.892 × 10-5	$3.101 imes 10^{-5}$	5.475×10^{-5}	0.6937
450	0.4880	1069 1081	0.05015	$8.951 imes 10^{-5}$	3.261×10^{-5}	6.219×10^{-5}	0.6948
500	0.4565		0.05298	1.004×10^{-4}	$3.415 imes 10^{-5}$	$6.997 imes10^{-5}$	0.6965
500	0.4042	1093	0.05572	1.117×10^{-4}	$3.563 imes 10^{-5}$	7.806×10^{-5}	0.6986
700	0.3627	1115	0.06093	1.352×10^{-4}	3.846×10^{-5}	9.515×10^{-5}	0.7037
300	0.3627	1135	0.06581	1.598×10^{-4}	4.111×10^{-5}	1.133×10^{-4}	0.7092
900		1153	0.07037	1.855×10^{-4}	4.362×10^{-3}	1.326×10^{-4}	0.7149
000	0.3008	1169	0.07465	2.122×10^{-4}	$4.600 imes 10^{-5}$	1.529×10^{-4}	0.7206
500	0.2772	1184	0.07868	2.398×10^{-4}	4.826×10^{-5}	1.741×10^{-4}	0.7260
000	0.1990	1234	0.09599	$3.908 imes 10^{-4}$	5.817×10^{-5}	2.922×10^{-4}	0.7478
000	0.1553	1264	0.11113	5.664×10^{-4}	6.630×10^{-5}	4.270×10^{-4}	0.7539
