GUJARAT TECHNOLOGICAL UNIVERSITY ME - SEMESTER-1 • EXAMINATION – WINTER 2014

Subject Code: 2710310 Date:00 Subject Name: Optimization Techniques for Engineers Time: 2:30PM to 5:00PM			:06/01/ 2015 Marks: 70	
Q.1	(a)	Use two phase simplex method to solve $Maximize Z = 5x_1 - 4x_2 + 3x_3$ $subject \ to \ 2x_1 + x_2 - 6x_3 = 20;$ $6x_1 + 5x_2 + 10x_3 \le 76;$ $8x_1 - 3x_2 + 6x_3 \le 50;$ $x_1, x_2, x_3 \ge 0$	07	
	(b)	Use penalty method to solve the following LPP: Minimize $Z = 5x + 3y$ Subject to $2x + 4y \le 12$; 2x + 2y = 10; $5x + 2y \ge 10$; $x, y \ge 0$	07	
Q.2	(a)	Find the maximum of $Z = 6x + 8y$ subject to $5x + 2y \le 20$; $x + 2y \ge 10$; $x, y \ge 0$	07	
	(b)	By solving its dual problem. Minimize the following function using cubic search method (up to only two iteration). $f(x) = x^2 + \frac{54}{x}$	07	
	(b)	Minimize the following function using successive quadratic estimation method (up to only two iteration). $f(x) = x^2 + \frac{54}{x}$	07	
Q.3	(a)	Minimize the following function using Exhaustive search method (up to only two iteration). $f(r) = r^{2} + \frac{54}{5}$	07	
	(b)	Minimize $(x_1, x_2) = x_1 - x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$, using random walk method from the point $X_1 = \begin{pmatrix} 0.0 \\ 0.0 \end{pmatrix}$ with a starting step length of $\lambda = 1.0$. Assume suitable data necessary to solve the problem (up to only two iteration).	07	

Q.3 (a) Minimize the following function using Interval halving method (up to only 07

1

two iteration).

$$f(x) = x^2 + \frac{54}{3}$$

- (b) Minimize $(x_1, x_2) = 100(x_2 x_1^2)^2 + (1 x_1)^2$, using random walk 07 method from the point $X_1 = \begin{pmatrix} -1.2 \\ 1.0 \end{pmatrix}$ with a starting step length of $\lambda = 1.0$. Assume suitable data necessary to solve the problem (up to only two iteration).
- Q.4 (a) Minimize $(x_1, x_2) = x_1 x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$, using Univariate method 07 from the point $X_1 = \begin{pmatrix} 0.0 \\ 0.0 \end{pmatrix}$. Assume suitable data necessary to solve the problem (up to only two iteration).
 - (b) Minimize $(x_1, x_2) = x_1 x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$, using Powell's method 07 from the point $X_1 = \begin{pmatrix} 0.0 \\ 0.0 \end{pmatrix}$. Assume suitable data necessary to solve the problem (up to only two iteration).
- Q.4 (a) Minimize $(x_1, x_2) = x_1 x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$, using Hooke and Jeeves' 07 method from the point $X_1 = \begin{pmatrix} 0.0 \\ 0.0 \end{pmatrix}$. Assume suitable data necessary to solve the problem (up to only two iteration).
 - (b) Discuss Rosenbrock's algorithm to find optimal solution for unconstrained 07 problem with suitable example.
- Q.5 (a) Minimize $f(x) = (x_1^2 + x_2 11)^2 + ([[x_1 + x_2^2 7)]]^2$ Subject to $g_1(x) = 26 - (x_1 - 5)^2 - x_2^2 \ge 0$, $g_2(x) = 20 - 4x_1 - x_2 \ge 0, x_1, x_2 \ge 0$

Using Generalized Reduced Gradient Method from the initial point $x_1^{(0)}=1$ and $x_2^{(0)}=2$. Assume suitable data necessary to solve the problem (up to only one iteration).

(b) Give explanation on Genetic algorithm with suitable example. 06

Q.5 (a) Minimize $f(x) = (x_1^2 + x_2 - 11)^2 + ([x_1 + x_2^2 - 7)]^2$ Subject to $g_1(x) = 26 - (x_1 - 5)^2 - x_2^2 \ge 0$, $g_2(x) = 20 - 4x_1 - x_2 \ge 0, x_1, x_2 \ge 0$

> Using Gradient Projection Method from the initial point $x_1^{(0)} = 0$ and $x_2^{(0)} = 0$. Assume suitable data necessary to solve the problem (up to only one iteration).

(b) Give explanation on Variational approach to solve optimal control problem. 06