GUJARAT TECHNOLOGICAL UNIVERSITY ME - SEMESTER- 1 EXAMINATION – WINTER 2014

Subject Code: 2710503 Date:07/0				
Subject Name: Fiber Optic Communication Time: 02:30 pm – 05:00 pm Total Marks Instructions: 1. Attempt all questions.				
	2. 3.	r i i i i i i i i i i i i i i i i i i i		
Q.1	(a) (b)	 Define (i) Fiber Birefringence (ii) Attenuation in Fiber (iii) Fiber optic Modes Solve the following example: i) Find the core radius necessary for single ómode operation at 1310 nm of a step-index fiber with core index 1.480 and cladding index 1.478. What are the numerical aperture and maximum acceptance angle of this fiber? ii) A point source of light is 14 cm below the surface of a large body of water (n= 1.33 for water). What is the radius of the largest circle on the water surface through which the light can emerge? 	07 07	
Q.2	(a) (b)	 Enlist the Advantages of Optical Fiber Communication. Describe with the aid of simple ray diagrams: (a) The multimode step index fiber; (b) The single-mode step index fiber. Compare the advantages and disadvantages of these two types of fiber for use as an optical channel. 	07 07	
	(b)	OR A Graded index fiber has a core with a parabolic refractive index profile which has a diameter of 50 m.The fiber has a numerical aperture of 0.2. Estimate the total number of guided modes propagating in the fiber when it is operating at a wavelength of 1 m.	07	
Q.3	(a) (b)	 Enlist Nonlinear Effects in Fiber Optic Link. Two step index fibers exhibit the following parameters: (a) A multimode fiber with a core refractive index of 1.5, a relative refractive index difference of 3% and an operating wavelength of 0.82 μm; (b) An 8 μm core diameter single-mode fiber with a core refractive index the same as (a), a relative refractive index difference of 0.3% and an operating wavelength of 1.55 μm. Estimate the critical radius of curvature at which large bending losses occur in both cases. 	07 07	

OR

Q.3 (a) Explain (i) PMD Compensation (ii) Fiber Bragg Gratings.

07

	(b)	Describe the three types of fiber misalignment which may contribute to insertion loss at an optical fiber joint.	07
		A step index fiber with a 200 μ m core diameter is butt jointed. The joint which is index matched has a lateral offset of 10 μ m but no longitudinal or angular misalignment. Using two methods, estimate the insertion loss at the joint assuming uniform illumination of all guided modes.	
Q.4	(a)	The refractive index of the InGaAsP active region of an injection laser at a wavelength of 1.5 μ m is 3.5 and the device has an active cavity length of 400 μ m. for laser operation at a wavelength of 1.5 μ m. Determine: (a) the laser emission mode index; (b) the eligible number of wavelengths inside the cavity; (c) the frequency separation of the modes in the active cavity in order to produce constructive interference.	07
	(b)	Compare APD ó PIN Photo detector. OR	07
Q.4	(a) (b)	Describe key features of WDM system. Explain key system requirements in analyzing point to point link. Also calculate Rise Time Budget	07 07
Q.5	(a) (b)	Explain Eye Pattern measurement technique. Write a short note on (i) Raman Amplifier & (ii) EDFA OR	07 07
Q.5	(a) (b)	Describe SONET frame structure along with protection schemes. A 2*2 biconical tapered fiber coupler has an input optical power level of P0=200 w.The output powers at the other three ports are P1=80 w, P2=75 w and P3=6.3nW. Find (1) Coupling Ratio (2) Excess Loss (3) Insertion Losses (4) Crosstalk	07 07
