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Instructions:

1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.

Q.1 (a) Are the vectors
a,=1124), o,=(2,-1,-52), o,=01,-1,-4,0), «,=(2,1,16) linearly
independent in R*?
(b) Check whether the following set of vectors form a subspace.
(1) S={ala=(a,a,,..a,); aja,=0;a, € R,Vi}
(i) Setof all functions of the form k, +k, sinx, in F(-oo,0).

(c) Let V' be a vector space over the field 7. Show that the intersection of two
subspaces of V'is a subspace of /. What can you say for the union of two
subspaces of V' ?

Q.2 (a) Let Vand W be two vector spaces over the field F. Let 7 and U be linear
transformations from V into W . Then prove that 7+ U and T U are also linear
transformations.

(b) If T'is linear transformation defined by
7(1,0,0)=(0,1,0,2)
7(0,1,0)=(0,1,1,0)
7(0,01)=(01-14)
Then find range of ', null space of 7 and dimensions of R (7)and N(T).
OR
(b) Let T be the linear operator on R® defined by
T(x;, x5, x3)=(8x;, X, —x,, 22X, +X,+X3) .

Is 7 invertible ? If so, find a rule for 7 .

Q.3 (a) Let Cbe the field of complex numbers in algebra of polynomials and
let £ =x*+2,then

1. If zeC ; where z:lil: , then show that f(z) =1.
—1

1 0
2. Find f(B), where B:{ 1 2}.

3. If the linear operator 7 defined by 7'(c;,c,,c;) = (in2 ¢ ,C Ji"2 Cy),
then find £(7).

4. If g=x*+3i thenfind f(g).
(b) State and prove Cayley-Hamilton theorem.
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OR

Q.3 (a) Determine the eigen values and the corresponding eigen spaces for the matrix
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A=2 0 2
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Let S,, S, & S, be the subspaces of R® generated by
S, ={(a,b,c)la+b-2c=0},8, ={(a,b,c)/a=b}&
S, ={(a,b,c)la+2c¢=0,b—4c =0}.
Determine () a basis for S;(S, and (b) the dimension of S, + S,.

Define the following terms (i) 7' - invariant subspace
(éf) Restriction of a linear transformation

Let 7 be a linear transformation on R*defined by
T(x,y,z)=(-3x+3y—2z,-7x+6y -3z, x—y—2z).

1 1
(/) Show that the subspace S=<12]|.| 1 is T - invariant.
1 -1

(i7) Determine the matrix of 7' restricted to S with respect to the basis vectors
of S.

Let R*have the Euclidean inner product. Use the Gram-Schmidt process to
transform the basis {u,,u,,u,}into an orthonormal basis where

u,=(0,1,2), u,=(-1,0,1), u,=(-11,3).

OR

Let 7 be the linear operator on R*which is represented in the standard ordered

5 -6 -6
basis by the matrix 4= -1 4 2 |. Find the minimal polynomial for 7.

3 -6 -4

Lei L+
Verify that the matrix A= 131, —12+i is unitary. Also find its inverse.
2 2

Show that (u,v>=%ulvl+%u2v2forms an inner product space on R’. Sketch

the unit circle in an xy -coordinate system in R”.

Solve the following linear system using Doolittle’s method-
3x+5y+2z= 8

8y+2z=-7
6x+2y+8z=26
OR
Let a linear transformation on Cbe defined by

Lx=(x,+ix,,x, +ix,,x;+ix,) Where x=(x,,x,,x,) is in C°. Determine the
adjoint of L. Show that L "is transposed conjugate of L .
Apply the power method to the following symmetric matrix to obtain the
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dominant eigen value by taking the initial approximation as x, =[1 1 1] g
0.49 0.02 0.22
A=]0.02 028 0.20
0.22 0.20 .040
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