Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER – I • EXAMINATION – WINTER • 2014

Subject code: 2711606 Subject Name: Energy and Mass Integration (EMI) Time: 02:30 pm - 05:00 pm Date: 12-01-2015

Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) A co-polymerization plant uses benzene as a solvent. Benzene is to be 09 recovered from its gaseous waste stream. Two lean steams in the process, an additive stream and a catalytic solution, are potential process MSAs. Organic oil, which can be regenerated using flash separation, is the external MSA. The stream data is as follows

Stream	F (kmol/s)	y ^s or x ^s	y ^t or x ^t
R ₁ (Off-gas)	0.2	0.0020	0.0001
L ₁ (Additives)	0.08	0.003	0.006
L2 (Catalytic sol)	0.05	0.002	0.004
L ₃ (Organic oil)	Unlimited	0.0008	0.0100

The equilibrium relation for Additives is : y = 0.25x, for Catalytic solution is : y = 0.5x and for Organic oil is : y = 0.1x.

- (a) Show how to utilize the process MSAs to minimize the amount of the external MSA required to recover benzene from gaseous waste stream. Use $\hat{e} x_{min} = 0.0002$.
- (b) Design the MEN.
- (b) Write step by step procedure to find out optimum value of $\hat{e} T_{min}$ for heat 05 exchanger network synthesis problem.
- Q.2 (a) Justify: õNo heat should pass across the pinch for the minimum utility 05 designö

	FCp (kW/°C)	T_{in} (°C)	T_{out} (°C)
H1	3.60	100	430
H2	3.27	180	350
C1	2.80	440	150
C2	1.38	520	300
C3	3.36	390	150

(b) Determine minimum utility targets using LP method. ($\hat{e} T_{min} = 10 \text{ °C}$)

09

(b) Mass exchanger network is to be designed for removal of H₂S from sour 09 coke oven gas, which is a mixture of H₂, CH₄, CO, N₂, NH₃, CO₂ and H₂S. it is proposed to remove H₂S and sent it to a unit to convert it to sulfur. The conversion is incomplete in that unit hence tail gases must be sent for H₂S removal. Adsorption is to be used for H₂S removal using aqueous ammonia or chilled methanol as MSA.

Stream	F (kg/s)	y^s or x^s	y^t or x^t
Coke oven gas	0.9	0.0700	0.0005
Tail gases	0.1	0.0510	0.0003
Aq. NH ₃	2.3	0.0008	0.0310
Methanol	Unlimited	0.0001	0.0035

Equilibriums data is y=1.45x for aqueous ammonia and y=0.26x chilled methanol.

Find out pinch point and minimum amounts MSE.

Q.3 To explore the possibilities for energy integration before designing a column we 14 need to prepare inter-cooling and inter-heating curve for de-propanizer. Explain the step by step procedure to plot it for a mixture of five hydrocarbons in the series, C_2 to C_6 in feed. The feed contains C_2 -3, C_3 -20, C_4 -37, C_5 -35, and C_6 -5 lb moles/hr. The column is to be designed for splitting C_3/C_4 . It is expected that more than1 % C_4 should not go in top product, no C_5 and C_6 in top product. There should not be C_2 in bottom product, maximum 1.5% of C_3 can be allowed in bottom product. Write all the working equations along with algorithm using Antoine constants for vapor pressure calculation.

(Vapor Pressur<u>e = $10^{(A + B / (t^{C} + C))}$ psia)</u>

Component	А	В	С
C2	5.0120015	-823.03103	328.18
C3 lk	4.3742477	-587.76681	248.90
C4hk	3.8201853	-367.50819	153.30
C5	4.0537542	-539.73661	169.60
C6	4.0165587	-545.39181	141.15

OR

Q.3 Find out pinch point and minimum utilities for the following network if H1 and C3 14 are not permitted to exchange heat. Use $\hat{e} T_{min} = 10 \text{ }^{\circ}\text{C}$.

	Fcp (MW/K)	Tin (°K)	Tout (°K)
H1	2.376	590	400
H2	1.577	471	200
H3	1.320	533	150
C1	1.600	200	400
C2	1.600	100	430
C3	4.128	300	400
C4	2.624	150	280

Q.4 (a) Justify with suitable example that adding cycles can save work required for 05 refrigeration.

(b) Formulate MILP problem for the minimum number of exchanger units for 09 the hot and cold streams given below. Use $\hat{e} T_{min} = 20 \text{ °C}$.

Stream	Fcp (MW/K)	T_{in} (°C)	T _{out} (°C)
H1	1.3	400	110
H2	2.2	340	120
C1	1.6	160	400
C2	1.8	110	260

OR

- Q.4 (a) Explain the analogy of Heat Exchanger Network Synthesis and Mass US
 Exchanger Network Synthesis.
 (b) Explain Multi effect Distillation. Discuss benefits and limitations of multi-effect distillation. With a case study data compare it with conventional
- Q.5 (a) Explain Composite Curve (HCC and GCC) and discuss role of them for 07 HENS.

column.

(b) Compare Sequential and Simultaneous Heat Exchanger Network Synthesis 07 approaches.

OR

- Q.5 (a) Can stream splitting reduce number of Exchanger units for HENS? Justify 05 your answer.
 - (b) Explain TQ diagram for side strippers and side enriches and compare it with 09 TQ diagram of conventional equivalent sequential separation.
