Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER – I • EXAMINATION – WINTER • 2014

	Subject code: 2711801 Date: 06-01-20 Subject Name: Application Based Systems for Air Pollution Control Management				
Time	: 02	:30 pm - 05:00 pm Total Marks:	70		
Instruc	ction	S:			
	1.	Attempt all questions.			
	2.	Make suitable assumptions wherever necessary.			
	3.	Figures to the right indicate full marks.			
Q.1	(a)	Explain Following Terms	07		
		1. PM 2.5 2. PM 10 3. Smoke 4. Smog 5. Albedo 6. Calm condition			
		7. Radiosonde			
	(b)		07		

- Q.2 (a) Describe the characteristics of stack plumes with temperature profile and 07 plume shape in the x-z coordinates system for various atmospheric conditions.
 - (b) Sulfur dioxide is being emitted at a rate of 0.90 kg/s from a stack with an 07 effective height of 150 m. The average wind speed at stack height is 4.8 m/s and the stability category is B. Determine the short-time period, downwind, center-line concentration in micrograms per cubic meter at ground-level distances from the stack of (a) 600 m (b) 1000 m (c) 1200 m (d) 1600 m (f) 2000 m (g) 3000 m and (h) 4000 m

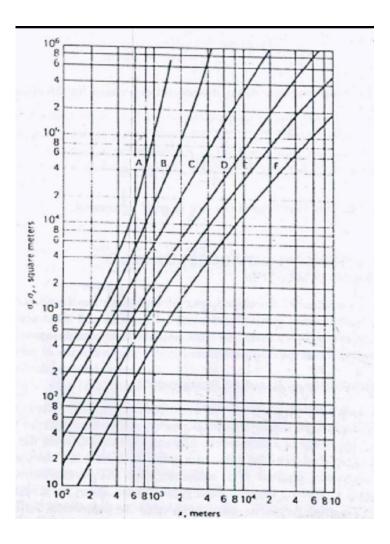
OR

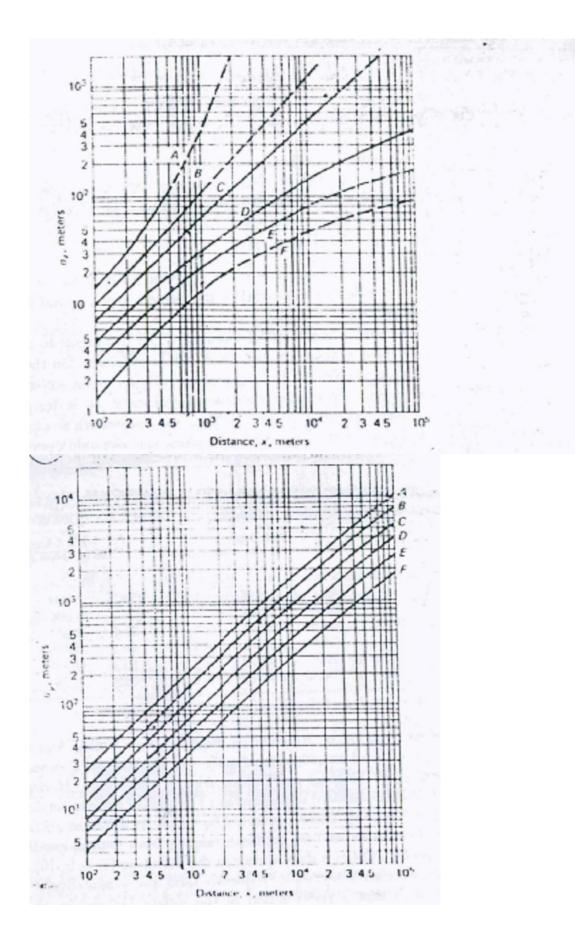
(b) Estimate the total hydrocarbon concentration at a point 200 m downwind 07 from an expressway at 6.10 pm on an overcast day. The wind is perpendicular to the highway and has a speed of 4.0 m/s. The traffic density along the highway is 8000 vehicles per hour, and the average vehicle speed is 50 km/hour. The average vehicle emission rate of hydrocarbon is 2.3×10^{-2} g/s.

Q.3 (a) Explain following air pollution control equipments with neat sketches. 07

- 1. Bag Filter with pulse jet cleaning systems.
- 2. Cyclone Separator
- (b) The wind and stack gas speeds are 4 m/s and 5.8 m/s, respectively, and 07 the stack diameter is 1800 mm. The atmospheric stability condition is neutral with a temperature of 300 °K, and the stack gas temperature is 440 °K. Estimate the plume rise in meters by the Briggs equation.

OR


- Q.3 (a) Explain following air pollution control equipments with neat sketches. 07
 - 1. Electro-static Precipitators
 - 2. Multi-cyclone separator


(b) Sulfur dioxide is emitted at a rate of 170 g/s in to an atmosphere where 07 the wind speed is expected to be approximately 5.5 m/s at stack height. It is desired that the ground-level concentration at the center line not exceed 200 μ g/m³ at a distance of 800 m. What effective stack height is required in, meters ?

Q.4	(a)	Write the design steps for Absorption Tower.	07
	(b)	A cloth fitter has $R_f \& R_p$ resistance values of 37,000 kg/m ² s and 61,000 s ⁻¹ , respectively. The filter area is 2200 m ² and the volume flow rate of air is 11 m ³ /s with a dust loading Ld of 12 g/m ³ . Determine,	07
		 a. The pressure drop at startup in N/m² and millibars, b. The mass area concentration W after 3 hr of operation in kg/m² and c. The pressure drop after 2 hours in N/m² and milibars. 	
Q.4	(a)	Write down the sources of sulfur dioxide and explain its control methods	07
		with neat sketches.	
	(b)	If the process gas exhaust rate is 5 x 10^6 cm ³ /s, determine the number of bags required in the pulse jet type bag house along with their arrangements.	07
Q.5	(a)	Write notes on following particulates control equipments	07
		1. Spray tower.	
		2. Venturi scrubber	
	(b)	Control methods of Nitrogen oxides.	07
		OR	
Q.5	(a)	Write notes on	07
		1. Air to cloth ratio for fabric filters	
		2. Particle size distribution	
	(b)	An electrostatic precipitator with a specific collection area of 0.984 m ² /m ³ /min is found to have an actual overall collection efficiency of 97% if the value of A/Q is increased to $1.321 \text{ m}^2/\text{m}^3/\text{min}$. Estimate two inticipated collection	07
		The is increased to 1.521 m/m/mm. Estimate two interplated concerton	

efficiency on the basis of (i) Deutsch equation (ii)Hazen-type equation with

value of n is equal to 4.

