Seat No.: _____

GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER – I • EXAMINATION – WINTER • 2014

Subject code: 2712904 Date: 09-01			
Time	Subject Name: Control System Theory Time: 02:30 pm - 05:00 pm Total Marks: 7		
Instr	1. 2.	ONS: Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	(a)	Explain lead-lag compensation based on Root locus and Frequency response	07
	(b)	approach. Discuss the effect of load disturbance on control system with suitable Example.	07
Q.2	(a)	Obtain e ^{<i>at</i>} for the following matrix. $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$	07
	(b)	Explain Preliminary Design consideration in time & frequency domain based on Root Locus.	07
	(b)	OR Explain the implementation of Digital PID Controller.	07
Q.3	(a) (b)	Find state space representation of DC motor. Find Eigen value and Eigen vector of the system having, $A = \begin{bmatrix} 0 & 6 & -5 \\ 1 & 0 & -2 \\ 3 & 2 & 4 \end{bmatrix}$ OR	07 07
Q.3	(a) (b)		07 07
		$\frac{Y(s)}{U(s)} = \frac{(S+2)}{s^3 + 9s^2 + 26s + 24}$	
		Determine whether the system is completely controllable or not?	
Q.4	(a)	Construct the state model for a system characterized by the differential equation, $\frac{d^3y}{dt^3} + 8\frac{d^2y}{dt^2} + 15\frac{dy}{dt} + 9y = u$	07
	(b)	Design sliding mode controller so that close loop system falls upon sliding line $\begin{bmatrix} \dot{x}1\\ \dot{x}2 \end{bmatrix} = \begin{bmatrix} 1 & 1\\ -7 & -5 \end{bmatrix} \begin{bmatrix} x1\\ x2 \end{bmatrix} + \begin{bmatrix} 0\\ 1 \end{bmatrix} u \& F = \begin{bmatrix} 1 & 0 \end{bmatrix} x$	07
0.4	(a)	OR Explain Lianunov based stability analysis with suitable example	07

Q.5	(a)	Explain Infinite Time Regulator Problem in detail.	07
	(b)	Discuss Parameter Optimization in optimal control system.	07
		OR	
Q.5	(a)	Write a brief note on optimal control system.	07
	(b)	Explain Quadratic Optimal Regulator System.	07
