GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER – I • EXAMINATION – WINTER • 2014

M. E SEMESTER – I • EXAMINATION – WINTER • 2014			
Subject code: 2713011 Date: 12-0			015
Subject Name: Membrane Separation Processes			
Time: 02:30 pm - 05:00 pm Total Mark			: 70
Instructions:			
		pt all questions.	
		suitable assumptions wherever necessary. s to the right indicate full marks.	
Q.1	(a)	State various methods of manufacturing of polymeric membranes and discuss any one in details.	07
	(b)	For practical applications membranes are installed in a suitable	07
		device, which is referred to as membrane module. Discuss various membrane modules compare their characteristics, advantages and disadvantages, if any, with schematic.	
Q.2	(a)	Discuss Kedem-Katchalsky and Solution-diffusion models of solute transport in reverse osmosis.	07
	(b)	Explain concentration polarization with a schematic diagram. How can the effect of concentration polarization be reduced in pressure driven membrane processes? OR	07
	(b)	Discuss the effect of various parameters on the performance of nanofiltration process. State few industrial applications of nanofiltration	07
Q.3	(a)	Write a short note on any one of the following:(i) Micellear enhanced ultrafiltration (ii) Affinity Ultrafiltration	07
	(b)	Discuss fundamental mechanisms of gas transport with special mention of dual sorption model.	07
Q.3	(a)	Derive the design equation for the separation of binary gas mixture using a complete mixing model. State the assumptions clearly.	07
	(b)	A well mixed membrane permeator has 20% CO ₂ (A) and 80% CH ₄ (B) at a total pressure of 12.5 atm. The permeate side is continuously flushed with pure CH ₄ at 1.5 atm so that the CO ₂ concentration in it is virtually zero. A 300 µm thick PDMS film is used as the membrane. The following data are given: the ideal separation factor = 3.15, Permeability of CO ₂ in PDMS at given conditions $P_A = 4570$ barrer, solubility coefficient of CH ₄ in PDMS $S_B = 0.0059$ cm ³ (STP)/cm ³ (polymer)-mm. Hg. Calculate the flux of CO ₂ and of CH4 through the film and the permeance of CO ₂ in PDMS.	07

(a) State the basic principle of pervaporation. Discuss critically the phenomenon of temperature-drop at the membrane surface during pervaporation.
State various industrial applications of pervaporation and

Q.4

State various industrial applications of pervaporation and discuss any one application with a schematic diagram.

14

OR

(b) Derive various mass transfer resistances in a dialysis process
14 with a schematic diagram.
A dialysis process is being designed to recover a certain solute

from a dilute solution having solute concentration 2.0×10^{-2} kg mol/m³ through a membrane to a solution having solute concentration 0.3×10^{-2} kg mol/m³. The membrane is 1.59×10^{-5} m thick. The distribution coefficient is 0.75; diffusivity of solute through membrane is 3.5×10^{-11} m²/s. The mass transfer coefficients in the upstream and downstream are 3.5×10^{-5} m/s and 2.1×10^{-5} m/s respectively. Calculate

(i) The individual resistances, total resistance and the total percent resistance of the two films.

(ii) The flux at steady state and the total area in m^2 for a transfer of 0.01 kg mol solute/h.

- Q.5 (a) Explain the working principles of various types of liquid 07 membranes with schematic diagrams.
 - (b) What are the applications of liquid membrane technology? 07 OR
- Q.5 (a) Discuss briefly the mechanism of facilitated transport in 07 membranes.
 - (b) State some of the potential applications of facilitated transport. 07
