Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER – I • EXAMINATION – WINTER • 2014

		M. E SEMESTER – I • EXAMINATION – WINTER • 2014	
Subject code: 2714106Date: 07-01-2015Subject Name: Digital Modulation and CodingTime: 02:30 pm - 05:00 pmTotal Marks: 70Instructions:Total Marks: 70			
	1. 2. 3.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
Q.1	(a)	Discuss MPSK modulation in detail and derive the energy and Euclidean distance for the modulated signal. Also explain the signal space diagram for $M=2, 4, 8$.	07
	(b)	Describe standard array decoding for the linear block codes with a suitable $(6,3)$ code example.	07
Q.2	(a)	Describe C.P.M with full and partial response. Also discuss about phase tree	07
	(b)	and signal space diagram of binary C.P.F.S.K. For a (6,3) systematic linear block code, three parity check digits are V3= u0+u1+u2 V4= u0+u1 V5= u0+u2, Where u0, u1 and u2 are message digits. Then construct the appropriate	07
		generator matrix and code table. With corresponding decoding table, decode the data word if received word is: 101100. OR	
	(b)	Explain burst error correcting code in detail.	07
Q.3	(a) (b)	Construct a systematic (7,4) cyclic code using a generator polynomial $g(x) = x^3+x^2+1$. Decode the data word if received codeword is r= 1101101. Write a short note on BCH codes.	07 07
		OR	
Q.3	(a) (b)	Describe Reed Solomon codes. Discuss interleaved codes in detail.	07 07
Q.4	(a)	Compare convolution codes with linear block codes and explain encoding of rate $R = \frac{1}{2}$ non systematic feed forward convolution encoder.	07
	(b)	Draw convolution encoder (2,1,3) for generator matrix $G(D) = [1+D+D^2+D^3 1+D+D^3]$ and hence obtain state table, code tree and trellis diagram for the same. OR	07
Q.4	(a) (b)	Explain encoding of rate $R = \frac{1}{2}$ systematic feed forward convolution encoder. Draw convolution encoder (2,1,2) for generator matrix $G(D) = [1+D 1+D+D^2]$ and hence obtain state table, code tree and trellis diagram for the same.	07 07
Q.5	(a)	(i) Mention the advantages of LDPC codes over turbo codes and describe basic formation of LDPC codes based on Gallagerøs idea. (ii) Show that MSK is a binary C.P.F.S.K with modulation index $h = \frac{1}{2}$ and minimum frequency separation of $1/2T$.	04 03
	(b)	Discuss fundamental ideas behind turbo codes and hence explain basic turbo	07

(b) Discuss fundamental ideas behind turbo codes and hence explain basic turbo 07 encoding structure.

- (i) Compare TDM with FDM. **(a)** (ii) What are PCBC & PCCC? Draw (2,1,3) convolution encoder with 03 generator matrix $G(D) = \begin{bmatrix} 1 & 1+D+D^3 \end{bmatrix}$
- Discuss basics of iterative decoding of turbo codes and hence explain it with 07 **(b)** 2-state (2,1,1) encoder with generator matrix G (D)= $\begin{bmatrix} 1 & 1/(1+D) \end{bmatrix}$ using log-MAP algorithm.

Q.5