GUJARAT TECHNOLOGICAL UNIVERSITY ME - SEMESTER-1 • EXAMINATION – WINTER 2014

Subject Code: 2714303	Date:09/01/ 2015
Subject Name: Theory of Elasticity & Plasticity	
Гіте: 2:30 to 5:00 Рт	Total Marks: 70
Instructions:	
1. Attempt all questions.	
2. Make suitable assumptions wherever necessary.	

3. Figures to the right indicate full marks

- Q.1 (a) Derive the basic differential equation for equilibrium in Cartesian co- 07 ordinate system.
 - (b) If the components of the stress tensor in MPa, at some point P in a beam 07 with respect to (x,y,z) co-ordinates is given as below:

- (a) Find the stress vector t_n on the plane whose normal is given by nx=ny=nz = $1/\sqrt{3}$
- (b) Find out the normal (n) and shear (n) components of t_n .

Q.2 (a) Commencing from the equations defining the state of stress at a point derive 07 the general stress relationship for the normal stress on an inclined plane. $\sigma_n = \sigma_{xx}l^2 + \sigma_{zz}n^2 + \sigma_{yy}m^2 + 2\sigma_{xy}lm + 2\sigma_{yz}mn + 2\sigma_{zx}ln$

Show that the relationship reduces for the plane stress system to well-known equation:

$$\sigma_n = \frac{1}{2}(\sigma_{xx} + \sigma_{yy}) + \frac{1}{2}(\sigma_{xx} - \sigma_{yy})\cos 2\theta + \sigma_{xy}\sin 2\theta$$

(b) Explain Compatibility of strain in detail. Derive the compatibility relations 07 of strain for a 2-D system.

OR

- (b) Draw a neat sketch of the displacement of a cubic element and hence derive 07 the equations of linear and shear strains in Cartesian co-ordinate system.
- Q.3 (a) Derive Airyø stress function in Polar co-ordinate system for an axi- 07 symmetric stress distribution.
 - (b) The stress tensor at a point is given as $\begin{bmatrix} 200 & 160 & -120 \\ 160 & -240 & 100 \\ -120 & 100 & 160 \end{bmatrix} kN/m^2$ 07

Determine the strain tensor at this point. Take $E=210 \times 10^6 \text{ kN/m}^2$ and $\mu=0.3$

OR

Q.3 (a) For the curved beam subjected to moment: M = 150 kJ, internal & external 07 radii: a = 150 mm & b = 350 mm respectively, calculate radial and transverse stresses at inner, outer and every quarter thickness points and plot their variations using the following equations with usual notations:

 $\begin{array}{l} \mbox{Radial stress:} \\ \sigma_r &= \acute{0} \ ^{4M}\!/_N \left[a^2 b^2 / r^2 \, ln \, (b/a) + b^2 \, ln \, (r/b) + a^2 \, ln \, (a/r) \right] \\ \mbox{Tangential stress:} \\ \sigma_\theta &= \acute{0} \ ^{4M}\!/_N \left[\acute{0} \ a^2 b^2 / r^2 \, ln \, (b/a) + b^2 \, ln \, (r/b) + a^2 \, ln \, (a/r) + b^2 \, \acute{0} \, a^2 \right] \\ \mbox{Here; } N &= (b^2 \ \acute{0} \ a^2)^2 \, \acute{0} \ 4 \ a^2 b^2 \, \left[ln \, (b/a) \right]^2 \\ \end{array}$

- (b) Using Swift construction, find normal and resultant shear stress on a plane 07 whose normal has directions cosines are l = 0.342, m = 0.405 respectively w.r.t. Principal stresses: $P_1 = 900$ MPa (Tensile), $P_2 = 200$ MPa (Tensile) and $P_3 = 300$ MPa (Compressive).
- Q.4 (a) State the generalized Hookeøs law. Write down the constitutive relations for 10 an Isotropic material in 2D. Calculate the volumetric strain for the following data: $x = 200 \text{ N/mm}^2$, $y = 150 \text{ N/mm}^2$, $z = 120 \text{ N/mm}^2$, $E = 210 \text{ kN/mm}^2$, $\mu = 0.3$.
 - (b) State the various failure criterion that govern the failure of materials under 04 static loading. Also give the statement of Tresca and Von Mises yield criterion.

OR

Q.4 (a) If the stress tensor for a three dimensional stress system is given as below 07 and one of the principal stress has a value of 40 MN/m^2 , determine the

	30	10	10	
values of the three eigen vectors.	10	0	20	
	10	20	0	

Q.4 (b) Prove the following failure criteria according to the Distortion Energy 07 theory:

$$2\sigma_y^2 = (\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2$$

- Q.5 (a) Explain the concept of stability of structures. Give the basis of stability of 07 analysis for a slender straight column as well as for a column initially bent.
 - (b) Draw the stress distribution diagram for thick wall cylinder subjected to only 07 internal pressure. Also explain the boundary conditions utilized in TOE for
 - (i) Thick wall cylinder subjected to only external pressure
 - (ii) Plate element with circular hole of large radius

OR

- Q.5 (a) Draw a neat sketch of an element subjected to body forces, radial stresses, 07 transverse stresses and shear stresses, derive the basic differential equations of equilibrium in 2-D Polar co-ordinate system.
 - (b) Write Short notes on any two:

07

- (i) Parameters that govern the theories of failure
- (ii) Assumptions made in Linear / Classical theory of elasticity
- (iii)Hydrostatic and Deviatoric stresses

(iv)Ductile failure vs Brittle failure