Seat No.: ______ No._____

GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER – I • EXAMINATION – WINTER • 2014

Subject code: 710203NDate: 03-12-20Subject Name: Information Theory and Coding			
Time: 10:30 am - 01:00 pm Total Marks: 70			
Ins	1. 2. 3.	tions: Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full mark.	
Q.1	(a)	Given S={A, B, C}, where P(A)=P(B) and P(C)=P(A)/2, derive S×S and the	07
	(b)	corresponding probability distribution. What is the importance of WSS (Wide Sense Stationary) conditions in spectral estimation of a random process?	07
Q.2	(a)	Explain the source entropy and derive the condition on the probability distribution for the maximum source entropy.	07
	(b)	Explain the source-extension and derive the entropy of an n-th extension of a source S with entropy denoted by H(S). OR	07
	(b)	Derive characteristic function of a Cauchy random variable.	07
Q.3	(a)	Give the main properties of PDF (Probability Density Function) and CDF (Cumulative Distribution Function).	07
	(b)	Explain the histogram equalization using CDF.	07
Q.3	(a)	Sketch the plots of the PSD (Power Spectral Density) and ACF (Auto- correlation Function) for a white process.	07
	(b)	Derive the relation between the ACFs of the output and input of a linear filter with the impulse response $h[n]$.	07
Q.4	(a)	Explain Huffman coding procedure for a 4-ary system with an example of a source emitting six distinct symbols.	07
	(b)	Explain Shannon-Fano coding for a binary transmission system. OR	07
Q.4	(a) (b)	Explain the main blocks of MPEG-1 standard. Explain the following ciphers: substitution, transposition and one-time pad in the traditional cryptography.	07 07
Q.5	(a)	Derive Hamming bound for (n, k) code and explain the significance of Hamming distance in channel coding.	07
	(b)	Explain encoding and decoding in (7, 4) linear block code. OR	07
Q.5	(a) (b)	Explain the convolution code with an example. Explain the derivation of a systematic (7, 4) cyclic code.	07 07
