Enrolment

GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER – I • EXAMINATION – WINTER • 2014

Su	bject	code: 711201N Date: 01-12-2014	
	•	Name: Advanced Fluid Mechanics0:30 am - 01:00 pmTotal Marks: 70	
Ins	struc	ctions:	
	1. 2. 3.		
Q.1	(a) (b)	Classify and explain the open channel flow. What is water surface profile? Explain channel bed slopes and flow profiles.	07 07
Q.2	(a) (b)	Derive non-uniform flow equation for rectangular open channel. Explain channel transitions and obtained condition to determine u/s depth of the channel transition.	07 07
		OR	
	(b)	Describe positive and negative surges of the channel.	07
Q.3	(a)	The differential equation of the water surface profile behind a dam is	07
		$\frac{dy}{dx} = 0.001 \frac{3^{10/3} - v^{10/3}}{y^{3-1}}$	
	(b)	The boundary condition is : at $x = 0$, $y = 10m$. Solve this differential equation by finite difference method. What is FEM? Explain how the FEM is applied for transient flow in open channel. OR	07
Q.3	(a)	Write short note on spatially varied flow.	07
X	(b)	Write the three basic equations of fluid mechanics and derive the third equation.	07
Q.4		Explain water hammer analysis. What is skin drag? Derive general equation for the force exerted on a body placed in a moving fluid.	07 07
		OR	
Q.4	(a) (b)	Write short note on Magnus effect. Derive equations for σ , τ_0 and Cd when the velocity distribution is $u/U = 2(y/\sigma) - 2(y/\sigma)^3 + (y/\sigma)^4$	07 07
Q.5	(a) (b)	Derive momentum equation to analyse the flow in the boundary layer. Draw and explain Stanton's curves for turbulent flow. OR	07 07
Q.5	(a) (b)	Derive universal velocity distribution equation for turbulent flow. Explain laminar flow and derive an equation to indicate relationship of shear stress and pressure gradient.	07 07
