Enrolment

GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER – I • EXAMINATION – WINTER • 2014

Subject code: 711501Date: 01-12-2014Subject Name: Matrix Analysis of Framed StructuresTime: 10:30 am - 01:00 pmTotal Marks: 70Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1 (a) Derive member flexibility matrix for a plane frame member. 07

- (b) Derive the equation $A_M = R A_S$ for rotation of axis in two dimension. A_M is a vector consisting of the components of the action A parallel to the x_M , y_M axes. A_S is a vector consisting of the components of the action A parallel to the x_S , y_S axes. R is a rotation matrix.
- **Q.2** (a) Formulate S_J matrix for the beam shown in fig. 1. 07
 - (b) Considering flexural effects only and reactive moment in anticlockwise 07 direction at support A as redundant, formulate B_{MS} matrix for the plane frame shown in fig. 2.

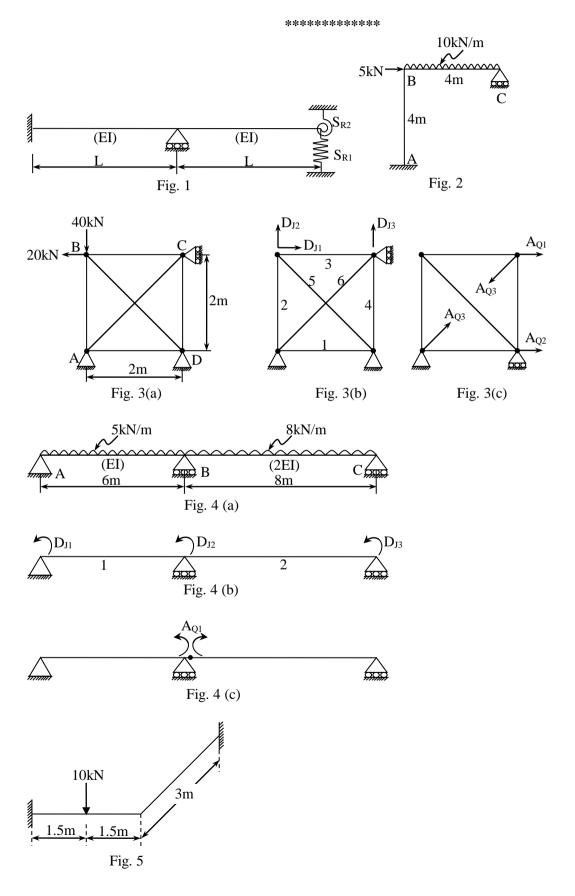
OR

- (**b**) Define: B_{MJ} , F_{QQ} , B_{RQ} , D_Q , S_{MS} , A_E , A_{FC}
- Q.3 (a) Formulate B_{MS} matrix for the plane truss shown in fig. 3(a). For joint 07 displacements & member number and redundant actions refer fig. 3(b) and fig. 3(c) respectively. Consider tensile force positive.
 - (b) Using flexibility method, determine the redundant actions A_{Q1} , A_{Q2} and A_{Q3} for **07** the plane truss shown in fig. 3(a). For joint displacements & member number and redundant actions refer fig. 3(b) and fig. 3(c) respectively. Take EA = constant for all the members. Consider tensile member force positive.

OR

- Q.3 (a) Formulate B_{MS} matrix for the beam shown in fig. 4(a). For joint displacements 07 & member number and redundant actions refer fig. 4(b) and fig. 4(c) respectively.
 - (b) Using flexibility method, determine the redundant action A_{Q1} for the beam **07** shown in fig. 4(a). For joint displacements & member number and redundant actions refer fig. 4(b) and fig. 4(c) respectively.
- Q.4 (a) Using stiffness method, determine joint displacements for the beam shown in 07 fig. 4(a).
 - (b) Using stiffness method, determine member end actions for the beam shown in fig. 4(a).

OR


- Q.4 (a) Formulate S_{FF} matrix for the grid shown in fig. 5. EI = constant & GJ = 07 constant for both the member. Take GJ = 0.8 EI.
 - (b) Using stiffness method, determine joint displacements for the grid shown in fig. 07
 5. EI = constant & GJ = constant for both the member. Take GJ = 0.8 EI.
- **Q.5** (a) Obtain combined load vector for the plane frame shown in fig. 2, if uniform **07** temperature increase of member AB is 20°. $E = 2 \times 10^5 \text{ N/mm}^2$, c/s Area of member AB & BC = 4000 mm² and coefficient of thermal expansion $\alpha = 1.2 \times 10^{-5} \text{ mm/mm}^{\circ}\text{C}$.

07

Derive S_M matrix for plane frame member or plane grid member. **(b)**

- Formulate combined load vector for the beam shown in fig. 4(a), if the support Q.5 **(a)** 07 B settles by 5mm. EI = 1.2×10^5 kNm².
 - With reference to member oriented flexibility matrix method, write the equation 07 **(b)** of D_J , A_R and A_M .

OR

07