Enrolment

GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER – I • EXAMINATION – WINTER • 2014

Subject code: 712101NDate: 01-12-2014Subject Name: Applied Thermodynamics and Heat TransferTime: 10:30 am - 01:00 pmTotal Marks: 70Instructioner

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1	(a)	What is Applied Thermodynamics? Explain in brief laws of thermodynamics.	07
	(b)	Explain the following terms :	07
		(i) Exergy (ii) Irreversibility (iii) Entropy	

- Q.2 (a) Explain Modes of Heat transfer with suitable examples. Write short note on 07 'Significance of Heat transfer.'
 - (b) With usual notations derive an expression for change in internal energy of gas 07 obeying vanderwaal's equation.

OR

- (b) Derive the generalized equation for a fin.
- Q.3 (a) Explain in brief Clausius-Clapeyron equation, Joule Thomson coefficient and 09 Maxwell relations.
 - (b) A cylinder piston device contains 0.05 kg of steam at 1 MPa and 300^oC. The steam now expands to a final state of 200 kPa and 150° C, during work. Heat losses from a system to the surroundings are estimated to be 2 kJ during this process. Assuming the surroundings to be at $T_0 = 25^{\circ}$ C and $P_0 = 100$ kPa. Calculate the availability of steam at the initials and the final states.

OR

- **Q.3** (a) State and explain the following :
 - (i) Nusselt number (ii) Grashof number (iii) Prandtl number (iv) Lewis number
 - (b) Air at 10° C and at a pressure of 100 kPa is flowing over a plate at a velocity of 3 m/s. If the plate is 30 cm wide and at a temperature of 60° C, calculate the following quantities at x = 0.3.
 - (1) Velocity boundary layer thickness
 - (2) Thermal boundary layer thickness
 - (3) Heat transfer from the plate.
- Q.4 (a) With usual notations derive generalized two dimensional steady state heat 07 conduction equation in semi-infinite plate when two boundaries are at zero temperature.
 - (b) What are Heisler charts? Explain the significance of Heisler charts in solving transient conduction problems.07

OR

- **Q.4** (a) Explain the fluid flow along a flat plate
 - 1) Temperature distribution in thermal boundary layer
 - 2) Velocity distribution in hydrodynamic boundary layer
 - 3) Variation of local heat coefficient along the flow
 - (b) What are the criteria of thermodynamic equilibrium? What are different types07 of equilibriums? Discuss in detail.

07

07

07

- Q.5 (a) What is shape factor? Discuss the salient features of the shape factor for 06 analysis of radiant heat exchange between surfaces.
 - (b) Explain the term absorptivity α , reflectivity ρ and transmissivity τ of **08** $\alpha + \rho + \tau = 1$ radiant energy. How are they related to each other for a black body and an opaque body? Establish the expression and comment on the statement.

OR

Q.5	(a)	Derive necessary Von-Karnan's expression for convective heat transfer.	07
	(b)	Explain the following :	07

- (1) Emissivity (2) Lambert's cosine law
- (3) Wein's displacement law of radiation
