Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER – I • EXAMINATION – WINTER • 2014

Subject code: 712901N Date: 01-12-2014 **Subject Name: Mathematics for Researchers** Time: 10:30 am - 01:00 pm **Total Marks: 70 Instructions:** 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. 07 0.1 (a) Obtain Fourier series for the function $f(x) = x - x^2$ in the interval $[-\pi,\pi]$. Hence deduce that $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots = \frac{\pi^2}{12}$. (b) Define Rounding off and explain rules to round off a number correct to 07 *n* decimal places. Evaluate following integral by using Trapezoidal Rule 07 **O.2** (a) $\int \log_e x \, dx. \text{ (Take h=0.1)}$ (b) Detemine largest eigen value and corresponding eigen vectors of the 07 following matrix correct to three decimal places by using power method. $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ OR

- (b) Round-off the number 125250.5 up to four significant figures and 07 compute Absolute, Relative and Percentage errors.
- Q.3 (a) A river is 80 ft wide. The depth y in a feet at a distance x ft. from one 07 bank is given by the following table.

x	0	10	20	30	40	50	60	70	80		
у	0	4	7	9	12	15	14	8	3		
Find the enprovimentaly the eres the eres of the eress section											

Find the approximately the area the area of the cross section.

(b) Find y'(1.1) and y''(1.1) from the following table.

07

X	1.1	1.2	1.3	1.4	1.5	1.6
у	8.403	8.781	9.129	9.451	9.750	10.031

OR

- Q.3 (a) Express the function f(x) = |x| as a Fourier series in the interval 07 $[-\pi, \pi]$
 - (b) Find the Fourier transform of the function f defined as follows: $f(x) = \begin{cases} 1 - x^2; & |x| < 1 \\ 0 & ; & |x| > 1 \end{cases}$ 07

- Q.4 (a) Solve the following system of equations by using Gauss elimination 07 method. 10x - y + 2z = 4 x + 10y - z = 3 2x + 3y + 20z = 7
 - (b) State Cayley-Hamilton theorem and using it find the inverse of the 07 matrix $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ OR
- Q.4 (a) By using Gauss-Jordan method find the inverse of the matrix 07 $A = \begin{bmatrix} -1 & 1 & 2 \\ 3 & -1 & 1 \\ -1 & 3 & 4 \end{bmatrix}$
 - (b) Explain Escalator (Partition) method. 07
- Q.5 (a) Using Taylor's series method compute y'(0.2) correct to five decimal 07 places, given that $\frac{dy}{dx} = x^2y 1$, y(0)=1.
 - (b) Apply Runge-Kutta method of order four to find an approximate value 07 of y when x=0.2, given that $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$, y(0)=1 OR
- Q.5 (a) Find a real root of the equation $x^4 x 9 = 0$ correct to three decimal 07 places by using Newton-Raphson method.
 - (b) Find a real root of the equation $x^3 4x 9 = 0$ correct to three decimal 07 places by using Bisection Method.